Startseite Crystal structure of 2-chloro-1,3-di-tert-pentyl-4,4-diphenyl-1,3,2λ3,4-diazaphosphasiletidine, C22H32ClN2PSi
Artikel Open Access

Crystal structure of 2-chloro-1,3-di-tert-pentyl-4,4-diphenyl-1,3,2λ3,4-diazaphosphasiletidine, C22H32ClN2PSi

  • Dennis Mo , Marcel Serio und Walter Frank EMAIL logo
Veröffentlicht/Copyright: 8. November 2017

Abstract

C22H32ClN2PSi, triclinic, P1̅ (no. 2), a = 11.8482(3) Å, b = 12.8044(3) Å, c = 15.6562(4) Å, α = 77.694(2)°, β = 84.144(2)°, γ = 89.029(2)°, V = 2308.48(10) Å3, Z = 4, Rgt(F) = 0.0527, wRref(F2) = 0.1148, T = 173(2) K.

CCDC no.:: 1580185

The major component of the asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless cube
Size:0.50 × 0.49 × 0.49 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:3.0 cm−1
Diffractometer, scan mode:STOE IPDS, ω scans
2θmax, completeness:58.6°, 98.8%
N(hkl)measured, N(hkl)unique, Rint:62121, 12461, 0.053
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 11305
N(param)refined:568
Programs:SHELX [1], DIAMOND [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Cl10.40851(4)0.92813(5)0.73670(4)0.05338(14)
Cl21.08565(4)0.54349(5)0.26905(4)0.05019(13)
P10.57620(4)0.99404(4)0.68008(4)0.03739(11)
P20.91626(4)0.58286(4)0.32422(3)0.03386(10)
Si10.73086(4)0.87843(4)0.75278(3)0.02756(10)
Si20.76401(4)0.50553(4)0.25180(3)0.02541(9)
N10.65354(12)0.88669(11)0.66294(10)0.0303(3)
N20.64615(13)0.98601(12)0.76999(11)0.0365(3)
N30.84147(12)0.46741(12)0.34184(9)0.0292(3)
N40.84621(12)0.62118(11)0.23403(10)0.0313(3)
C10.64194(15)0.81907(15)0.59858(13)0.0357(4)
C2a0.6073(4)0.8866(3)0.5143(2)0.0805(13)
H21a0.66550.94120.48960.121*
H22a0.53480.92140.52630.121*
H23a0.59900.84120.47220.121*
C3a0.7570(2)0.7663(2)0.5839(2)0.0472(7)
H31a0.81450.82320.56070.057*
H32a0.77830.72670.64150.057*
C4a0.7617(3)0.6895(3)0.52129(19)0.0603(8)
H41a0.83870.66110.51470.090*
H42a0.74110.72760.46380.090*
H43a0.70820.63040.54510.090*
C5a0.5530(2)0.7308(3)0.6391(3)0.0607(9)
H51a0.47960.76380.65140.091*
H52a0.57730.68840.69390.091*
H53a0.54580.68430.59770.091*
C2Ab0.7310(16)0.7386(19)0.608(2)0.0472(7)
H24b0.73820.70550.55670.071*
H25b0.71140.68360.66130.071*
H26b0.80310.77240.61240.071*
C3Ab0.669(3)0.899(2)0.5067(12)0.0805(13)
H33b0.62270.96460.50130.097*
H34b0.75080.91830.49410.097*
C4Ab0.632(2)0.821(2)0.4483(16)0.0603(8)
H44b0.60940.86360.39270.090*
H45b0.56740.77750.47980.090*
H46b0.69530.77490.43610.090*
C5Ab0.5245(12)0.7775(13)0.5994(11)0.031(4)
H54b0.52550.72710.56030.047*
H55b0.47410.83720.57930.047*
H56b0.49690.74100.65930.047*
C60.65451(19)1.06929(17)0.82212(17)0.0525(6)
C7c0.5349(6)1.1237(7)0.8256(7)0.088(3)
H71c0.51811.15670.76590.131*
H72c0.53501.17870.86060.131*
H73c0.47701.06970.85270.131*
C8c0.6775(6)1.0153(6)0.9109(5)0.0652(14)
H81c0.75020.97660.90670.078*
H82c0.61720.96130.93470.078*
C9c0.6842(5)1.0870(4)0.9758(4)0.0891(17)
H91c0.70841.04501.03080.134*
H92c0.60931.11780.98750.134*
H93c0.73901.14470.95100.134*
C7Ad0.7191(11)1.0067(12)0.9071(9)0.061(3)
H74d0.79200.97890.88620.092*
H75d0.73221.05670.94460.092*
H76d0.67150.94730.94100.092*
C8Ad0.5455(16)1.113(2)0.8486(16)0.0891(17)
H83d0.49311.05220.87460.107*
H84d0.51411.15360.79530.107*
C9Ad0.5474(7)1.1859(7)0.9151(6)0.0652(14)
H94d0.47121.21430.92610.098*
H95d0.60051.24530.89110.098*
H96d0.57171.14470.97040.098*
C100.7413(2)1.1540(2)0.7740(2)0.0670(8)
H1010.81621.12100.76830.101*
H1020.74471.21030.80740.101*
H1030.71881.18510.71550.101*
C110.70864(15)0.75330(14)0.83810(11)0.0310(3)
C120.78538(17)0.66858(14)0.84524(12)0.0361(4)
H1210.85490.67650.80840.043*
C130.7618(2)0.57305(16)0.90532(14)0.0444(5)
H1310.81460.51600.90900.053*
C140.6618(2)0.56101(17)0.95957(14)0.0498(5)
H1410.64630.49601.00130.060*
C150.5841(2)0.64305(19)0.95348(14)0.0497(5)
H1510.51500.63430.99080.060*
C160.60672(17)0.73838(16)0.89280(13)0.0400(4)
H1610.55230.79410.88840.048*
C170.88367(14)0.91430(13)0.72332(12)0.0300(3)
C180.96758(15)0.88290(15)0.77996(13)0.0363(4)
H1810.94800.83750.83580.044*
C191.07943(16)0.91710(17)0.75594(15)0.0450(5)
H1911.13550.89450.79510.054*
C201.10913(17)0.98360(18)0.67561(16)0.0472(5)
H2011.18561.00670.65940.057*
C211.02780(17)1.01677(17)0.61865(15)0.0459(5)
H2111.04821.06300.56330.055*
C220.91616(16)0.98254(15)0.64218(13)0.0379(4)
H2210.86081.00580.60250.045*
C230.85553(15)0.36590(15)0.40588(12)0.0337(4)
C24e0.8852(5)0.3928(3)0.4910(3)0.0689(11)
H241e0.95620.43380.47990.103*
H242e0.89420.32660.53450.103*
H243e0.82410.43540.51350.103*
C25e0.7410(3)0.3080(4)0.4219(3)0.0463(9)
H251e0.68320.35430.44520.056*
H252e0.71900.29810.36480.056*
C26e0.7384(3)0.1996(2)0.4850(2)0.0608(8)
H261e0.66150.16970.49320.091*
H262e0.76070.20810.54170.091*
H263e0.79130.15120.46060.091*
C24Af0.752(3)0.299(4)0.405(3)0.0463(9)
H244f0.76000.26850.35240.069*
H245f0.68430.34390.40460.069*
H246f0.74500.24110.45750.069*
C25Af0.903(4)0.376(2)0.4914(16)0.0689(11)
H253f0.98650.38640.48010.083*
H254f0.87070.44070.51000.083*
C26Af0.8770(19)0.2790(17)0.5656(11)0.0608(8)
H264f0.93050.27630.60980.091*
H265f0.88430.21400.54190.091*
H266f0.79940.28410.59270.091*
C270.9473(2)0.29849(18)0.36811(18)0.0572(6)
H2711.01980.33720.35750.086*
H2720.92630.28450.31260.086*
H2730.95480.23050.41000.086*
C280.83491(16)0.73172(14)0.18230(13)0.0371(4)
C29g0.7766(5)0.7243(8)0.1006(3)0.0551(13)
H291g0.76570.79640.06590.083*
H292g0.70280.68880.11890.083*
H293g0.82410.68300.06500.083*
C30g0.9534(2)0.7787(2)0.1507(2)0.0431(6)
H301g0.99740.72780.12120.052*
H302g0.99160.78450.20290.052*
C31g0.9584(3)0.8882(2)0.0879(2)0.0588(8)
H311g1.03690.91430.07680.088*
H312g0.91070.93870.11430.088*
H313g0.93070.88190.03230.088*
C29Ah0.9579(13)0.7806(15)0.1894(14)0.0431(6)
H294h1.01760.73610.16780.065*
H295h0.96590.78170.25090.065*
H296h0.96460.85360.15390.065*
C30Ah0.758(4)0.720(6)0.113(3)0.0551(13)
H303h0.67680.72060.13470.066*
H304h0.77620.65660.08800.066*
C31Ah0.800(2)0.8317(16)0.0459(13)0.074(7)
H314h0.78880.8270−0.01440.112*
H315h0.88040.84380.04990.112*
H316h0.75520.89120.06170.112*
C320.7643(2)0.79763(17)0.23868(17)0.0526(6)
H3210.80310.80090.29040.079*
H3220.68960.76410.25750.079*
H3230.75500.87010.20420.079*
C330.78979(14)0.42232(13)0.16785(10)0.0271(3)
C340.71330(15)0.34506(14)0.15749(11)0.0324(3)
H3410.64210.33630.19220.039*
C350.74005(17)0.28107(16)0.09721(13)0.0397(4)
H3510.68710.22920.09050.048*
C360.84394(18)0.29270(16)0.04674(13)0.0418(4)
H3610.86180.24940.00490.050*
C370.92155(17)0.36705(16)0.05714(13)0.0403(4)
H3710.99330.37410.02320.048*
C380.89504(15)0.43145(15)0.11700(11)0.0333(4)
H3810.94890.48250.12370.040*
C390.61046(13)0.52868(13)0.27989(11)0.0275(3)
C400.52760(15)0.52649(15)0.22260(12)0.0346(4)
H4010.54870.50860.16730.041*
C410.41503(16)0.55002(17)0.24537(14)0.0430(4)
H4110.35990.54740.20590.052*
C420.38312(16)0.57701(17)0.32476(15)0.0453(5)
H4210.30610.59320.34010.054*
C430.46351(17)0.58050(18)0.38220(14)0.0447(5)
H4310.44170.59930.43710.054*
C440.57602(15)0.55667(15)0.35993(12)0.0358(4)
H4410.63050.55950.39990.043*
  1. aOccupancy: 0.892(4); bOccupancy: 0.108(4); cOccupancy: 0.665(5); dOccupancy: 0.335(5); eOccupancy: 0.883(4); fOccupancy: 0.117(4); gOccupancy: 0.863(5); hOccupancy: 0.137(5).

Source of materials

The title compound was prepared according to standard procedures in argon atmosphere in oven-dried glassware using Schlenk-techniques [3], [4], [5], [6], [7], [8]. 5.4 g (15.2 mmol) N,N′-di(tpentyl)-Si,Si-diphenylsilanediamine were dissolved in 15 mL n-pentane and 10 mL diethylether. 19.0 mL of a n-butyllithium solution (c = 1.6 mol/L in n-hexane, 30.4 mmol) were added at −20 °C. The reaction mixture was stirred for 24 h at room temperature. Cooling to −78 °C and addition of 2.1 g (15.2 mmol) PCl3 yielded a yellow suspension. The reaction mixture was stirred for 1 h. After filtration and removal of the solvent under reduced pressure the crude product was obtained as viscous oil. The oil was allowed to stand at room temperature. Isometric colourless crystals were obtained within seven days.1H NMR (300 MHz, CDCl3, 25 °C): δ (p.p.m.) 0.90 (m, 6H, C(CH3)2)CH2CH3), 1.09 (s, 6H, C(CH3)2)CH2CH3), 1.13 (s, 6H, C(CH3)2)CH2CH3), 1.51 (m, 4H, C(CH3)2)CH2CH3), 7.48 (m, 6H, m-, p-CH), 7.86 (m, 2H, o-CH), 8.09 (m, 2H, o-CH). 13C{1H} NMR (75 MHz, CDCl3, 25 °C): δ (p.p.m.) 9.2 (d, 4J(P,C) = 3.2 Hz, 2 C, C(CH3)2)CH2CH3), 28.6 (d, 3J(P,C) = 7.5 Hz, 2 C, C(CH3)2)CH2CH3), 29.2 (d, 3J(P,C) = 6.6 Hz, 2 C, C(CH3)2)CH2CH3), 36.9 (d, 3J(P,C) = 6.8 Hz, 2 C, C(CH3)2)CH2CH3), 55.9 (d, 2J(P,C) = 6.5 Hz, 2 C, C(CH3)2)CH2CH3), 128.3–136.3 (12 C, Ar-C) 31P{1H} NMR (121 MHz, CDCl3, 25 °C): δ (p.p.m.) 216.2 (s). EI–MS spectra were obtained using a Finnigan TSQ 7000 instrument. EI–MS: m/z (%) 418(1) [M+], 389(100) [M–C2H5]. IR spectroscopic data were measured using a Bio-Rad Excalibur FTS 3500 FT–IR spectrometer with ATR-unit. IR 4000-560 cm−1: 3069(w), 3049(w), 2966(vs), 2927(m), 2878(m), 1966(vw), 1904(vw), 1872(vw), 1777(vw), 1589(m), 1461(m), 1427(s), 1171(s), 1115(vs), 1046(s), 979(w), 922(m), 880(vs), 814(w), 782(vw), 738(s), 715(m), 697(s), 632(w), 562(w).

Experimental details

In the refinement the riding model was applied using idealized C—H bond lengths as well as H—C—H, C—C—H angles. In addition, the H atoms of the CH3 groups were allowed to rotate around the neighbouring C—C bonds. The Uiso values were set to 1.5Ueq(Cmethyl) and 1.2Ueq(Car, Cmethylene), respectively. To account for residual electron density in the regions of all the tert-pentyl groups and for elongated anisotropic displacement ellipsoids of several carbon-atoms that did not appear to be physically meaningful, a two-position disorder for each tert-pentyl group was introduced with partial occupation sites for all carbon atoms but the tertiary ones C1, C6, C23 and C28 and the primary ones C10, C27 and C32. (Disorder ratio 0.892(4)/0.108(4) (group containing C1), 0.665(5)/0.335(5) ratio (C6), 0.883(4)/0.117(4) ratio (C23) and 0.863(5)/0.137(5) ratio (C28); disorder is omitted in the figure for clarity). Appropriate same distance and anisotropic displacement restraints and some equivalent anisotropic displacement parameters had to be applied to stabilize the geometry of the minor occupied parts of the partial occupation site models.

Comment

Diazaphosphasiletidines are heterocyclic compounds that contain a SiN2P four-membered ring as central building block. The first synthesis was described in the year 1963 and the compounds of the class have attracted considerable attention in phosphorus chemistry [3], [4], [5], [6], [7], [8]. Crystals of the first structurally characterised chlorosubstituted diazaphosphasiletidine, 2-chloro-1,3-bis(2,4,6-trimethylphenyl)-4,4-dimethyl-1,3,2λ3,4-diazaphosphasiletidine [7] contained approximately 12% of a second compound, namely 2-chloro-1,3-bis(2,4,6-trimethylphenyl)-4-chloro-4-methyl-1,3,2λ3,4-diazaphosphasiletidine. With respect to this impurity a Si,Si-diphenylsubstituted diazaphosphasiletidine, the title compound, has been introduced to preparative chemistry to avoid problems related to the content of Si,P-bis(chloro)functionalized species always present in samples of the Si,Si-dimethylderivative.

The asymmetric unit of the crystal structure of the phenyl derivative contains two crystallographically independent molecules, which do not differ significantly in bond lengths and angles. The central moiety of the title compound, the SiN2P four-membered ring, is almost planar. The nitrogen atoms exhibit a trigonal planar coordination sphere (sums of bond angles 359.52(11)° (N1) and 356.88(13)° (N2) (molecule no. 1), 359.39(11)° (N3) and 356.52(11)° (N4) (molecule no. 2). Phosphorus and silicon atoms bear the main ring strain (N1—Si1—N2 82.89(8)°; N3—Si2—N4 82.76(7)° and N1—P1—N2 85.90(7)°; N3—P2—N4 85.75(7)°). The Si—N bond lengths (Si1—N1 1.7392(15) Å, Si1—N2 1.7418(16) Å; Si2—N3 1.7387(15) Å, Si2—N4 1.7427(15) Å) exceed the expected lenght of a Si—N single bond (1.724(4) Å [9]) but correspond to those in related cyclosilazanes [7], [10], [11], [12], [13]. In contrast, the P—N distances are shorter (P1—N1 1.6928(15) Å, P1—N2 1.6889(18) Å; P2—N3 1.6932(15) Å, P2—N4 1.6891(16) Å) than reported for a typical single bond (1.704(4) Å [9]), but they also correspond to those in the first structurally characterized chlorosubstituted diazaphosphasiletidine [7]. The P—Cl bonds of the title compound are remarkably elongated (P1—Cl1 2.1963(7) Å, P2—Cl2 2.1967(7) Å) compared to the P—Cl distance in PCl3 (2.034 Å [14]) and exceed the sum of the covalence radii [15]. A comparison of the average Si—N, P—N and P—Cl distances in the title compound and the analogous distances of the formerly published dimethylsilanederivative [7] does not give evidence for substitution effects [16] and only shows a small difference (numerically significant but chemically not relevant) in the case of the P—Cl bond: Si—N 1.7406(15) Å average (in the title compound) vs. 1.7441(17) Å average (in the mentioned dimethylderivative); P—N 1.6910(16) Å average vs. 1.6856(17) Å average; P—Cl 2.1965(7) Å average vs. 2.1813(7) Å). The tert-pentyl groups in the solid of the title compound are disordered to give two positions of the ethyl moiety in each case (Exptl. det.). Comparing the solid state packings of the title compound and of related higher congeners of group 15 the increasing tendency to association of the molecules via El—Cl bridging bonds from P to Bi becomes apparent. Whereas the title compound consists of isolated molecules, Me2Si(NtBu)2AsCl contains dimers and in the antimony and the bismuth compound the molecules are connected to chains via bridging Cl atoms [17, 18] .

Acknowledgements

We thank E. Hammes and P. Roloff for technical support.

References

Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Suche in Google Scholar PubMed

Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Ver. 3.0. Crystal Impact GbR, Bonn, Germany, 2012.Suche in Google Scholar

Fink, W.: Zur Kenntnis von N,N′-Bis-trimethylsilyl-tetramethylcyclodisilazan und anderen 4gliedrigen Silicium und Stickstoff enthaltenden Ringen. Chem. Ber. 96 (1963) 1071–1079.10.1002/cber.19630960423Suche in Google Scholar

Veith, M.; Bertsch, B.; Huch, V.: Zur Element-Stickstoff-Doppelbindung in Kationen cyclischer Bis(amino)-phospha-, -arsa-, -stiba- und -bismutane. Z. Anorg. Allg. Chem. 559 (1988) 73–88.10.1002/zaac.19885590107Suche in Google Scholar

Frank, W.; Petry, V.; Gerwalin, E.; Reiss, G. J.: Synthesis, structure, and bonding of a mixed-valent tetraphosphete. Angew. Chem. Int. Ed. 35 (1996) 1512–1514.10.1002/anie.199615121Suche in Google Scholar

Breuers, V.; Lehmann, C. W.; Frank, W.: Unusual bonding and properties in main group element chemistry: rational synthesis, characterization, and experimental electron density determination of mixed-valent tetraphosphetes. Chem. Eur. J. 21 (2015) 4596–4606.10.1002/chem.201406131Suche in Google Scholar PubMed

Breuers, V.; Frank, W.: The crystal structure of 2-chloro-1,3-bis(2,4,6-trimethylphenyl)-4,4-dimethyl-1,3,2λ3,4-diazaphosphasiletidine. Z. Kristallogr. NCS 231 (2016) 529–532.10.1515/ncrs-2015-0176Suche in Google Scholar

Scherer, O. J.; Püttmann, M.; Krüger, C.; Wolmershäuser, G.: Aminophosphan- und Aminophosphoran-Rotamere. Chem. Ber. 115 (1982) 2076–2124.10.1002/cber.19821150608Suche in Google Scholar

Brown, I. D.; Altermatt, D.: Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. B41 (1985) 244–247.10.1107/S0108768185002063Suche in Google Scholar

Clegg, W.; Klingebiel, U.; Sheldrick, G. M.; Vater, N.: Darstellung und Molekülstruktur von 1,3-Diaza-2,4-disilacyclobutanen. Z. Anorg. Allg. Chem. 482 (1981) 88–94.10.1002/zaac.19814821110Suche in Google Scholar

Clegg, W.; Haase, M.; Sheldrick, G. M.; Vater, N.: Structure of 1,3-di-tert-butyl-2,2,4,4-tetraisopropylcyclodisilazane, C20H46N2Si2. Acta Crystallogr. C40 (1984) 871–873.10.1107/S0108270184006053Suche in Google Scholar

Shah, S. A. A.; Roesky, H. W.; Lubini, P.; Schmidt; H.-G.: 1,3-Bis(2,6-diisopropylphenyl)-2,2,4,4-tetramethyl-1,3-diaza-2,4-disilacyclobutane. Acta Crystallogr. C52 (1996) 2810–2811.10.1107/S0108270196006865Suche in Google Scholar

Anagho, L. E.; Bickley, J. F.; Steiner, A.; Stahl, L.: Synthesis and solid-state structure of a metal complex of a diphosphineimine. Angew. Chem. Int. Ed. 44 (2005) 3271–3275.10.1002/anie.200462588Suche in Google Scholar

Galy, J.; Enjalbert, R.: Crystal chemistry of the VA element trihalides: lone pair, stereochemistry, and structural relationships. J. Solid State Chem. 44 (1982) 1–23.10.1016/0022-4596(82)90396-6Suche in Google Scholar

Hollemann, A. F.; Wiberg, N.: Lehrbuch der Anorganischen Chemie, 102th ed., de Gryter, Berlin [u.a.], 2007.10.1515/9783110177701Suche in Google Scholar

Hayd, H.; Savin H.; Stoll A.; Preuss H.: Influence of substituents on bond lengths. J. Mol. Struct. 165 (1988) 87–97.10.1016/0166-1280(88)87008-8Suche in Google Scholar

Veith, M.; Bertsch, B.: Cyclische Bis(amino)-arsa-, -stiba-, -bismachloride und ein spezielles Tris(amino)bismutan. Z. Anorg. Allg. Chem. 557 (1988) 7–22.10.1002/zaac.19885570101Suche in Google Scholar

Ma, X.; Ding, Y.; Roesky, H. W.; Sun, S.; Yang, Z.: Synthesis and crystal structures of antimony(III) complexes with a bis(amino)silane ligand. Z. Anorg. Allg. Chem. 639 (2013) 49–52.10.1002/zaac.201200471Suche in Google Scholar

Received: 2017-8-3
Accepted: 2017-10-16
Published Online: 2017-11-8
Published in Print: 2018-1-26

©2018 Dennis Mo et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Artikel in diesem Heft

  1. Cover and Frontmatter
  2. Editorial 2018
  3. Crystal structure of dimethanol-bis{3-(((2-oxidonaphthalen-1-yl)methylene)amino)-2-oxo-2H-chromen-4-olato-κ3O,N:O′}dizinc(II), C42H30Zn2N2O10
  4. Crystal structure of aqua-bis{[2,6-dimethyl-N-(pyridin-2-ylmethylene)aniline-κ2N,N′]}zinc(II) triflate monohydrate [ZnC29H31N4O]CF3SO3⋅H2O
  5. Crystal structure of (E)-1-(4-{[(E)-4-Diethylamino-2-hydroxybenzene methylene]amino}phenyl)ethanone methoxy oxime, C20H27ClN3O3
  6. Crystal structure of (E)-1-(4-(((E)-4-(diethylamino)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one oxime, C19H23N3O2
  7. Crystal structure of poly[(μ2-1,4-bis((2-ethyl-1H-benzo[d]imidazol-1-yl)methyl)benzene-κ2N:N′)-(μ2-4,4′-sulfonyldibenzoato-κ2O:O′)zinc(II)], C40H34N4O6SZn
  8. Crystal structure of catena-poly[diaqua(μ3-pyrazine-2,3-dicarboxylato-κ4O,N:O′:O′′)zinc(II)] 1.25 hydrate, C6H8.5N2O7.25Zn
  9. Crystal structure of fac-(acetylacetonato-κ2O,O′)tricarbonyl(tri-m-tolyl phosphane-κP)rhenium(I), C29H28O5PRe
  10. Crystal structure of bis(μ2-methanolato-κ2O:O)-bis(methanol-κ1O)-bis{3-((4-methoxy-2-oxidobenzylidene)amino)-2-oxo-2H-chromen-4-olato-κ3O,O′,N}dichromium(III), C38H36Cr2N2O14
  11. Crystal structure of poly[aqua-(μ3-pyridine-3,5-dicarboxylato-κ5O,O′:O′′,O′′′,N)zinc(II)], C7H7NO6Zn
  12. Crystal structure of bis((1-(((4-(((benzyloxy)imino)methyl)phenyl)imino)methyl)naphthalen-2-yl)oxy-κ2O,N)copper(II), C52H42CuN4O4
  13. Crystal structure of bis{5-(diethylamino)-2-(((2-oxo-2H-chromen-6-yl)imino)methyl)phenolato-κ2O,N}cobalt(II), C40H38CoN4O6
  14. Crystal structure of diaqua-bis(N,N-dimethylformamide-κ1O)-bis{3-((5-chloro-2-oxidobenzylidene)amino)-2-oxo-2H-chromen-4-olato-κ4N,O,O′:O′}dinickel(II), C38H34Ni2Cl2N4O12
  15. Crystal structure of tetrakis(methanol-κO)bis{3-((4-methoxy-2-oxidobenzylidene)amino)-2-oxo-2H-chromen-4-olato-κ3O,N,O′}bicobalt(II), C38H38Co2N2O14
  16. Crystal structure of (S)-tert-butyl-(1-hydroxypropan-2-yl)carbamate, C8H17NO3
  17. Crystal structure of 4-(4′-(pyridin-4-yl)-[1,1′-biphenyl]-4-yl)pyridin-1-ium catena-poly[{5-carboxy-4′-methyl-[1,1′-biphenyl]-3-carboxylato-κ2O,O′}-(μ2-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-κ4O,O′:O′′,O′′′)lead(II)], C52H40N2O9Pb
  18. Crystal structure of catena-poly[diaqua-(μ2-5-methylisophthalato-κ2O:O′)(μ2-1,4-bis((1H-1,2,4-triazol-1-yl)methyl)benzene-κ2N:N′)], NiC21H22O6N6
  19. Crystal structure of the salt tris(guanidinium) tris(tetrapropylammonium) bis(pyridine-2,4,6-tricarboxylate) – water (1/10), C55H126N14O22
  20. Crystal structure of 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,7,8-trimethoxy-4H-chromen-4-one, C19H18O8
  21. Crystal structure of poly{[μ2-1,1′-(sulfonylbis(4,1-phenylene))bis(2-methyl-1H-imidazole)-κ2N:N′][μ2-4,4′-oxydibenzoato-κ2O:O′]cobalt(II)} hemihydrate, C34H27N4O7.5SCo
  22. The crystal structure of 25,27-(2,2′-[(2-thioxo-1,3-dithiole-4,5-diyl)disulfanediyl]diethanolate)-26,28-dihydroxycalix[4]arene — dichloromethane (1/1), C36H32Cl2O4S5
  23. The crystal structure of 1,2-bis(3-(pyridin-3-yl)-1,2,4-oxadiazol-5-yl)ethane, C16H12N6O2
  24. Crystal structure of 1-benzyl-3-((4-bromophenyl)amino)-4-(4-methoxyphenyl)-1H-pyrrole-2,5-dione, C24H19BrN2O3
  25. Crystal structure of bis(2-((allylcarbamothioyl)imino)-4-methylthiazol-3-ido-κ2N,S)palladium(II), C16H20N6PdS4
  26. Crystal structure of pyrimidine-2,5-dicarboxylic acid 1.5 hydrate, C12H14N4O11
  27. Crystal structure of trans-diaqua-bis(1H-pyrazole-3-carboxylato-κ2N,O)manganese(II), C8H10N4O6Mn
  28. Crystal structure of catena-(μ3-5-bromoisophthatato-κO,O′: O′′,O′′′′)-(1,2-bis(imidazol-1-yl)ethane-κN:N′)cobalt(II), C16H13CoN4O4Br
  29. Investigation of the compound La5Zn2−xPb1 + x (x = 0.20–0.32)
  30. Crystal structure of (OC-6-13)-diaqua-bis(3,5-di(pyridin-3-yl)-4H-1,2,4-triazol-4-amine-κ1N)-bis(dicyanamido-κ1N)zinc(II) tetrahydrate, ZnC28H32N18O6
  31. Crystal structure of Ga0.62(3)Sb0.38(3)Pd3
  32. Crystal structure of Ga0.47(1)Sb0.53(1)Pd2
  33. A derivative of the Corey lactone – crystal structure of (3aR,4S,5R,6aS)-4-(((tert-butyldimethylsilyl)oxy)methyl)-2-oxohexahydro-2H-cyclopenta[b]furan-5-yl benzoate, C21H30O5Si
  34. A Corey lactone: crystal structure of (3aR,4R,5R,6aS)-5-benzoyloxy-4(hydroxymethyl)hexahydro-2H-cyclopenta[b]furan-2-one, C15H16O5
  35. Hydrothermal synthesis and crystal structure of poly[aqua-(μ2-1,3-bis(4-pyridyl)propane-κ2N:N′)-(μ2-1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylato-κ2O:O′)manganese(II) hydrate, C22H20Cl6N2O6Mn
  36. Crystal structure of 2-acetylpyrrole S-methylthiosemicarbazonium hydroiodide, C8H13IN4S
  37. Crystal structure of [N,N-bis((pyrrol-2-yl)ethylidene)butane-1,4-diamine-κ4N,N′,N′′,N′′′]-nickel(II), C16H20N4Ni
  38. Crystal structure of poly[aqua-(μ5-2,5-dicarboxybenzoato-κ5O:O:O′:O′′:O′′′)sodium(I)], C9H7NaO7
  39. Crystal structure of bis(N′-((1H-pyrrol-2-yl)methylene)-1-methylthio-methanethiohydrazido-κ2S,N)nickel(II), C14H16N6NiS4
  40. Crystal structure of 1-(4-((benzo[d][1,3]dioxol-5-yloxy)methyl)phenethyl)-4-(3-chlorophenyl) piperazin-1-ium chloride, C26H28Cl2N2O3
  41. Crystal structure of 2-(4-(2-(4-(2-fluorophenyl)piperazin-1-yl)ethyl)benzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide, C26H26FN3O3S – a saccharin dervative
  42. Crystal structure of 3-(2-dimethylaminoethyl)-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C12H15N3OS
  43. Crystal structure of 3-(3-dimethylaminopropyl)-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C13H17N3OS
  44. The crystal structure of trans-tetraaqua-bis(p-tolylsulfinato-κO)calcium(II)), C14H22O8S2Ca
  45. The crystal structure of (E)-N′-(pyridin-2-ylmethylene)pyrazine-2-carbohydrazide, C11H9N5O
  46. Crystal structure of (E)-3-(pyren-1-yl)-1-(pyridin-4-yl)prop-2-en-1-one, C24H15NO
  47. Crystal structure of catena-poly[diaqua-(μ2-tartrato-κ4O,O′:O′′,O′′′)cobalt(II)], C4H8CoO8
  48. Crystal structure of 4-chloro-2-methyl-6-(4-(trifluoromethoxy)phenyl)pyrimidine, C12H8ClF3N2O
  49. Crystal structure of 1-(4-fluorophenyl)-N-(5-((triphenylstannyl)thio)thiophen-2-yl)methanimine, C27H20FN3S2Sn
  50. Crystal structure of methyl (Z)-2-(5-fluoro-2-oxoindolin-3-ylidene)hydrazine-1-carbodithioate, C10H8FN3OS2
  51. Crystal structure of tert-butyl (Z)-4-(2-(5-methoxy-3-(2-((methylthio)carbonothioyl)hydrazono)-2-oxoindolin-1-yl)ethyl)piperazine-1-carboxylate, C22H31N5O4S2
  52. The crystal structure of (E)-2-((2-(o-tolylcarbamothioyl)hydrazono)methyl)benzoic acid, C16H15N3O2S
  53. Crystal structure of 2-chloro-1,3-di-tert-pentyl-4,4-diphenyl-1,3,2λ3,4-diazaphosphasiletidine, C22H32ClN2PSi
  54. Crystal structure of tetramethyl 5,5′-(buta-1,3-diyne-1,4-diyl)diisophthalate, C24H18O8
  55. Crystal structural of 2-amino-4-(4-methoxyphenyl)-3-cyano-7,7-dimethyl-5-oxo-4H-5,6,7,8-tetrahydrobenzo[b]pyran, C19H20N2O3
  56. Crystal structure of 1,3,5-tris((trimethylsilyl)methyl)-1,3,5-triazinane-2,4,6-trione, C15H33N3O3Si3
  57. The crystal structure of bis(2-benzoyl-5-hydroxylphenolato-κ2O,O′)copper(II), C26H18CuO6
  58. Crystal structure of 2,6-bis(3-(pyrazin-2-yl)-1H-1,2,4-triazol-5-yl)pyridine – 1-ethyl-3-methyl-1H-imidazol-3-ium bromide (1/1), C23H22N13Br
  59. The crystal structure of (E)-N-benzyl-N′-benzylidene-4-methylbenzenesulfonohydrazide, C21H20N2O2S
  60. Crystal structure of ethyl (E)-5-((2-(3-hydroxybenzoyl)hydrazono)methyl)-3,4-dimethyl-1H-pyrrole-2-carboxylate – water – ethanol (1/1/1), C19H27N3O6
  61. The crystal structure of (E)-4-(3-ethoxy-2-hydroxybenzylideneamino)benzoic acid, C16H15NO4
  62. Crystal structure of (μ2-N,N′-bis((pyridin-4-yl)methyl)ethanediamide-κ2N:N′)-tetrakis(diethylcarbamodithioato-κ2S,S′)dizinc(II), C34H54N8O2S8Zn2
Heruntergeladen am 4.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2017-0226/html
Button zum nach oben scrollen