Startseite Crystal structure of catena-poly[diaqua-(μ2-5-methylisophthalato-κ2O:O′)(μ2-1,4-bis((1H-1,2,4-triazol-1-yl)methyl)benzene-κ2N:N′)], NiC21H22O6N6
Artikel Open Access

Crystal structure of catena-poly[diaqua-(μ2-5-methylisophthalato-κ2O:O′)(μ2-1,4-bis((1H-1,2,4-triazol-1-yl)methyl)benzene-κ2N:N′)], NiC21H22O6N6

  • Guo Hui , Chang Xin-Hong EMAIL logo und Qin Hao-Yue
Veröffentlicht/Copyright: 22. Dezember 2017

Abstract

NiC21H22O6N6, orthorhombic, Pnma, a = 18.214(3) Å, b = 20.934(3) Å, c = 5.5296(8) Å, V = 2108.3(5) Å3, Z = 4, Rgt(F) = 0.0279, wRref(F2) = 0.798, T = 296(2) K.

CCDC no.: 929616

A part of the title coordination polymer is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

5-methylisophthalic acid (0.02 g, 0.1 mmol), 1,4-bis(triazol-1-ylmethyl)benzene and NiCl2 (0.02 g, 0.1 mmol) were added to H2O (10 mL) in a teflon-lined stainless steel reactor. The mixture was heated at 393 K for 3 days, and then slowly cooled down to room temperature. Green block crystals of the title compound were obtained.

Table 1:

Data collection and handling.

Crystal:Green block
Size:0.38 × 0.21 × 0.21 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.98 mm−1
Diffractometer, scan mode:Bruker SMART, φ and ω-scans
θmax, completeness:25.5°, >99%
N(hkl)measured, N(hkl)unique, Rint:14935, 2016, 0.024
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 1750
N(param)refined:161
Programs:Bruker programs [1], SHELX [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Ni10.50000.50000.00000.02170(13)
O10.51536(7)0.42087(6)0.2310(2)0.0267(3)
O20.58992(9)0.36555(7)−0.0104(3)0.0400(4)
O30.55316(7)0.45801(6)−0.2950(2)0.0290(3)
H1W0.57500.4242−0.24950.044*
H2W0.53550.4433−0.42600.044*
N10.60169(9)0.53985(7)0.0851(3)0.0286(4)
N20.70975(9)0.58146(8)0.0296(3)0.0324(4)
N30.70954(12)0.56076(11)0.2617(4)0.0561(6)
C10.54553(10)0.36883(8)0.1602(3)0.0238(4)
C20.52393(10)0.30777(8)0.2858(3)0.0227(4)
C30.47582(11)0.30713(9)0.4818(3)0.0257(4)
H30.45960.34570.54590.031*
C40.45140(14)0.25000.5843(5)0.0255(6)
C50.54880(14)0.25000.1915(5)0.0230(5)
H50.58230.25000.06460.028*
C60.39868(17)0.25000.7936(5)0.0356(7)
H6Aa0.35300.23130.74390.053*
H6Ba0.39030.29310.84590.053*
H6Ca0.41900.22560.92440.053*
C70.64366(13)0.53611(11)0.2842(4)0.0440(6)
H70.62730.51750.42700.053*
C80.64575(11)0.56899(10)−0.0696(4)0.0353(5)
H80.63310.5793−0.22780.042*
C90.77469(11)0.61147(10)−0.0814(5)0.0417(5)
H9A0.77860.5973−0.24800.050*
H9B0.81830.59710.00330.050*
C100.80520(11)0.71691(10)0.1105(4)0.0346(5)
H100.82750.69480.23660.041*
C110.77225(10)0.68356(9)−0.0763(4)0.0298(4)
C120.73885(12)0.71693(11)−0.2611(4)0.0384(5)
H120.71620.6949−0.38650.046*
  1. aOccupancy: 0.50.

Experimental details

The hydrogen atoms were placed at calculated positions with the SHELX program [2] (AFIX options: 43 and 147).

Discussion

The rational design metal-organic coordination polymers (CPs) have received remarkable attention, not only because of their fascinating architectures and topologies but also because of their potential applications as functional materials [3], [4], [5], [6], [7], [8]. It is well known that topologies of coordination polymers have a significant impact on their physical and chemical properties [9], [10], [11], [12], [13]. Some isophthalic acids have been used in preparation of coordination polymers. For example, Du’s group synthesised a series of 1D, 2D and 3D CPs using isophthalic acid and 5-hydroxylisophthalic acid [14]. Guo’s group reported zinc(II) CPs based on isophthalic acid, 5-hydroxyisophthalic acid, 5-aminoisophthalic acid, 5-nitroisophthalic acid and 1,3,5-benzenetricarboxylic acid as educt. These compounds present superior CO2 adsorption, tunable photoluminescence, direct white-light emission [15]. The results show that different substituents lead to different structures and properties. However, the study of CPs based on 5-methylisophthalate has been reported rarely [16, 17] . In order to study the effect of a single methyl group on structural topologies and physicochemical properties we chose 5-methylisophthalic acid along with 1,4-bis(triazol-1-ylmethyl) benzene to elaborate new complexes.

The asymmetric unit possesses one half Ni(II) ions, one half mip (5-methylisophthalic acid) ligand, one half bitb (1,4-bis(triazol-1-ylmethyl)benzene) ligand, and one coordinated water molecule. Ni1 is six-coordinated with a distorted octahedral environment by two carboxylic O atoms from two mip ligands, two N atoms from two bitb ligands and two coordinated water molecules. The bond angles around Ni1 range from 85.36(5) to 180.0°, the Ni1—O bond lengths vary from 2.0910(13) to 2.1103(12) Å, and the Ni1—N bond distances are 2.0852(16). The mip ligand is completely deprotonated. Both carboxylate groups act monodentate to bridge two Ni(II) ions. On the basis of the connection, mip ligands connect Ni1 ions to form a 1D chain. The same is true for the bitb ligand (cf. the figure).

Acknowledgements

This work was supported financially by Henan Province basic and frontier technology research projects of Henan Provincial Department of Science and Technology (no. 142300410083) and key scientific research projects of higher education of Henan Province(16A150016).

References

Bruker: APEX2, SAINT and SADABS. Brucker AXS Inc., Madison, WI, USA (2009).Suche in Google Scholar

Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Suche in Google Scholar PubMed

Shaffer, D. W.; Xie, Y.; Szalda, D. J.; Concepcion, J. J.: Manipulating the rate-limiting step in water oxidation catalysis by ruthenium bipyridine–dicarboxylate complexes. Inorg. Chem. 55 (2016) 12024–12035.10.1021/acs.inorgchem.6b02193Suche in Google Scholar PubMed

Tian, Y.; Shen, S.; Cong, J.; Yan, L.; Wang, S.; Sun, Y.: Observation of resonant quantum magnetoelectric effect in a multiferroic metal–organic framework. J. Am. Chem. Soc. 138 (2016) 782–785.10.1021/jacs.5b12488Suche in Google Scholar PubMed

Wang, B.; Lv, X.-L.; Feng, D.; Xie, L.-H.; Zhang, J.; Li, M.; Xie, Y.; Li, J.-R.; Zhou, H.-C.: Highly stable Zr(IV)-based metal–organic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc. 138 (2016) 6204–6216.10.1021/jacs.6b01663Suche in Google Scholar PubMed

Levine, D. J.; Runčevski, T.; Kapelewski, M. T.; Keitz, B. K.; Oktawiec, J.; Reed, D. A.; Mason, J. A.; Jiang, H. Z. H.; Colwell, K. A.; Legendre, C. M.; FitzGerald, S. A.; Long, J. R.: Olsalazine-based metal–organic frameworks as biocompatible platforms for H2 adsorption and drug delivery. J. Am. Chem. Soc. 138 (2016) 10143–10150.10.1021/jacs.6b03523Suche in Google Scholar PubMed

Xu, R.; Wang, Y.; Duan, X.; Lu, K.; Micheroni, D.; Hu, A.; Lin, W.: Nanoscale metal–organic frameworks for ratiometric oxygen sensing in live cells. J. Am. Chem. Soc. 138 (2016) 2158–2161.10.1021/jacs.5b13458Suche in Google Scholar PubMed PubMed Central

Lin, G.; Ding, H.; Yuan, D.; Wang, B.; Wang, C.: A pyrene-based, fluorescent three-dimensional covalent organic framework. J. Am. Chem. Soc. 138 (2016) 3302–3305.10.1021/jacs.6b00652Suche in Google Scholar PubMed

Ma, L.-F.; Shi, Z.-Z.; Li, F.-F.; Zhang, J.; Wang, L.-Y.: Coordination polymers with free Bronsted acid sites for selective catalysis. New J. Chem. 39 (2015) 810–812.10.1039/C4NJ01898BSuche in Google Scholar

Liu, L.-L.; Yu, C.-X.; Li, Y.-R.; Han, J.-J.; Ma, F.-J.; Ma, L.-F.: Positional isomeric effect on the structural variation of Cd(II) coordination polymers based on flexible linear/V-shaped bipyridyl benzene ligands. CrystEngComm 17 (2015) 653–664.10.1039/C4CE01856GSuche in Google Scholar

Chang, X. H.; Han, M. L.: A Cu(II) coordination polymer with -tert-butyl isophthalate linker: synthesis, crystal structure, and magnetic properties. Chinese J. Struct. Chem. 34 (2015) 1895–1900.Suche in Google Scholar

Dong, W.-W.; Li, D.-S.; Zhao, J.; Ma, L.-F.; Wu, Y.-P.; Duan, Y.-P.: Two solvent-dependent manganese(II) supramolecular isomers: solid-state transformation and magnetic properties. CrystEngComm 15 (2013) 5412–5416.10.1039/c3ce40565fSuche in Google Scholar

Sato, H.; Matsuda, R.; Mir, M. H.; Kitagawa, S.: Photochemical cycloaddition on the pore surface of a porous coordination polymer impacts the sorption behavior. Chem. Commun. 48 (2012) 7919–7921.10.1039/c2cc31083jSuche in Google Scholar PubMed

Li, C.-P.; Yu, Q.; Zhang, Z.-H.; Du, M.: Multifarious ZnII and CdII coordination frameworks constructed by a versatile trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene tecton and various benzenedicarboxyl ligands. CrystEngComm 12 (2010) 834–844.10.1039/B912001GSuche in Google Scholar

Luo, F.; Wang, M. S.; Luo, M. B.; Sun, G. M.; Song, Y. M.; Li, P. X.; Guo, G. C.: Functionalizing the pore wall of chiral porous metal-organic frameworks by distinct −H, −OH, −NH2, −NO2, −COOH shutters showing selective adsorption of CO2, tunable photoluminescence, and direct white-light emission. Chem. Commun. 48 (2012) 5989–5991.10.1039/c2cc32103cSuche in Google Scholar PubMed

Abourahma, H.; Bodwell, G. J.; Lu, J.; Moulton, B.; Pottie, I. R.; Walsh, R. B.; Zaworotko, M. J.: Coordination polymers from calixarene-like [Cu2(dicarboxylate)2]4 building blocks: structural diversity via atropisomerism. Cryst. Growth Des. 3 (2003) 513–519.10.1021/cg0340345Suche in Google Scholar

Dai, J. C.; Wu, X. T.; Fu, Z. Y.; Cui, C. P.; Hu, S. M.; Du, W. X.; Wu, L. M.; Zhang, H. H.; Sun, R. Q.: Synthesis, structure, and fluorescence of the novel Cadmium(II)-trimesate coordination polymers with different coordination architectures. Inorg. Chem. 41 (2002) 1391–1396.10.1021/ic010794ySuche in Google Scholar PubMed

Received: 2017-7-5
Accepted: 2017-11-28
Published Online: 2017-12-22
Published in Print: 2018-1-26

©2018 Guo Hui et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Artikel in diesem Heft

  1. Cover and Frontmatter
  2. Editorial 2018
  3. Crystal structure of dimethanol-bis{3-(((2-oxidonaphthalen-1-yl)methylene)amino)-2-oxo-2H-chromen-4-olato-κ3O,N:O′}dizinc(II), C42H30Zn2N2O10
  4. Crystal structure of aqua-bis{[2,6-dimethyl-N-(pyridin-2-ylmethylene)aniline-κ2N,N′]}zinc(II) triflate monohydrate [ZnC29H31N4O]CF3SO3⋅H2O
  5. Crystal structure of (E)-1-(4-{[(E)-4-Diethylamino-2-hydroxybenzene methylene]amino}phenyl)ethanone methoxy oxime, C20H27ClN3O3
  6. Crystal structure of (E)-1-(4-(((E)-4-(diethylamino)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one oxime, C19H23N3O2
  7. Crystal structure of poly[(μ2-1,4-bis((2-ethyl-1H-benzo[d]imidazol-1-yl)methyl)benzene-κ2N:N′)-(μ2-4,4′-sulfonyldibenzoato-κ2O:O′)zinc(II)], C40H34N4O6SZn
  8. Crystal structure of catena-poly[diaqua(μ3-pyrazine-2,3-dicarboxylato-κ4O,N:O′:O′′)zinc(II)] 1.25 hydrate, C6H8.5N2O7.25Zn
  9. Crystal structure of fac-(acetylacetonato-κ2O,O′)tricarbonyl(tri-m-tolyl phosphane-κP)rhenium(I), C29H28O5PRe
  10. Crystal structure of bis(μ2-methanolato-κ2O:O)-bis(methanol-κ1O)-bis{3-((4-methoxy-2-oxidobenzylidene)amino)-2-oxo-2H-chromen-4-olato-κ3O,O′,N}dichromium(III), C38H36Cr2N2O14
  11. Crystal structure of poly[aqua-(μ3-pyridine-3,5-dicarboxylato-κ5O,O′:O′′,O′′′,N)zinc(II)], C7H7NO6Zn
  12. Crystal structure of bis((1-(((4-(((benzyloxy)imino)methyl)phenyl)imino)methyl)naphthalen-2-yl)oxy-κ2O,N)copper(II), C52H42CuN4O4
  13. Crystal structure of bis{5-(diethylamino)-2-(((2-oxo-2H-chromen-6-yl)imino)methyl)phenolato-κ2O,N}cobalt(II), C40H38CoN4O6
  14. Crystal structure of diaqua-bis(N,N-dimethylformamide-κ1O)-bis{3-((5-chloro-2-oxidobenzylidene)amino)-2-oxo-2H-chromen-4-olato-κ4N,O,O′:O′}dinickel(II), C38H34Ni2Cl2N4O12
  15. Crystal structure of tetrakis(methanol-κO)bis{3-((4-methoxy-2-oxidobenzylidene)amino)-2-oxo-2H-chromen-4-olato-κ3O,N,O′}bicobalt(II), C38H38Co2N2O14
  16. Crystal structure of (S)-tert-butyl-(1-hydroxypropan-2-yl)carbamate, C8H17NO3
  17. Crystal structure of 4-(4′-(pyridin-4-yl)-[1,1′-biphenyl]-4-yl)pyridin-1-ium catena-poly[{5-carboxy-4′-methyl-[1,1′-biphenyl]-3-carboxylato-κ2O,O′}-(μ2-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-κ4O,O′:O′′,O′′′)lead(II)], C52H40N2O9Pb
  18. Crystal structure of catena-poly[diaqua-(μ2-5-methylisophthalato-κ2O:O′)(μ2-1,4-bis((1H-1,2,4-triazol-1-yl)methyl)benzene-κ2N:N′)], NiC21H22O6N6
  19. Crystal structure of the salt tris(guanidinium) tris(tetrapropylammonium) bis(pyridine-2,4,6-tricarboxylate) – water (1/10), C55H126N14O22
  20. Crystal structure of 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,7,8-trimethoxy-4H-chromen-4-one, C19H18O8
  21. Crystal structure of poly{[μ2-1,1′-(sulfonylbis(4,1-phenylene))bis(2-methyl-1H-imidazole)-κ2N:N′][μ2-4,4′-oxydibenzoato-κ2O:O′]cobalt(II)} hemihydrate, C34H27N4O7.5SCo
  22. The crystal structure of 25,27-(2,2′-[(2-thioxo-1,3-dithiole-4,5-diyl)disulfanediyl]diethanolate)-26,28-dihydroxycalix[4]arene — dichloromethane (1/1), C36H32Cl2O4S5
  23. The crystal structure of 1,2-bis(3-(pyridin-3-yl)-1,2,4-oxadiazol-5-yl)ethane, C16H12N6O2
  24. Crystal structure of 1-benzyl-3-((4-bromophenyl)amino)-4-(4-methoxyphenyl)-1H-pyrrole-2,5-dione, C24H19BrN2O3
  25. Crystal structure of bis(2-((allylcarbamothioyl)imino)-4-methylthiazol-3-ido-κ2N,S)palladium(II), C16H20N6PdS4
  26. Crystal structure of pyrimidine-2,5-dicarboxylic acid 1.5 hydrate, C12H14N4O11
  27. Crystal structure of trans-diaqua-bis(1H-pyrazole-3-carboxylato-κ2N,O)manganese(II), C8H10N4O6Mn
  28. Crystal structure of catena-(μ3-5-bromoisophthatato-κO,O′: O′′,O′′′′)-(1,2-bis(imidazol-1-yl)ethane-κN:N′)cobalt(II), C16H13CoN4O4Br
  29. Investigation of the compound La5Zn2−xPb1 + x (x = 0.20–0.32)
  30. Crystal structure of (OC-6-13)-diaqua-bis(3,5-di(pyridin-3-yl)-4H-1,2,4-triazol-4-amine-κ1N)-bis(dicyanamido-κ1N)zinc(II) tetrahydrate, ZnC28H32N18O6
  31. Crystal structure of Ga0.62(3)Sb0.38(3)Pd3
  32. Crystal structure of Ga0.47(1)Sb0.53(1)Pd2
  33. A derivative of the Corey lactone – crystal structure of (3aR,4S,5R,6aS)-4-(((tert-butyldimethylsilyl)oxy)methyl)-2-oxohexahydro-2H-cyclopenta[b]furan-5-yl benzoate, C21H30O5Si
  34. A Corey lactone: crystal structure of (3aR,4R,5R,6aS)-5-benzoyloxy-4(hydroxymethyl)hexahydro-2H-cyclopenta[b]furan-2-one, C15H16O5
  35. Hydrothermal synthesis and crystal structure of poly[aqua-(μ2-1,3-bis(4-pyridyl)propane-κ2N:N′)-(μ2-1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylato-κ2O:O′)manganese(II) hydrate, C22H20Cl6N2O6Mn
  36. Crystal structure of 2-acetylpyrrole S-methylthiosemicarbazonium hydroiodide, C8H13IN4S
  37. Crystal structure of [N,N-bis((pyrrol-2-yl)ethylidene)butane-1,4-diamine-κ4N,N′,N′′,N′′′]-nickel(II), C16H20N4Ni
  38. Crystal structure of poly[aqua-(μ5-2,5-dicarboxybenzoato-κ5O:O:O′:O′′:O′′′)sodium(I)], C9H7NaO7
  39. Crystal structure of bis(N′-((1H-pyrrol-2-yl)methylene)-1-methylthio-methanethiohydrazido-κ2S,N)nickel(II), C14H16N6NiS4
  40. Crystal structure of 1-(4-((benzo[d][1,3]dioxol-5-yloxy)methyl)phenethyl)-4-(3-chlorophenyl) piperazin-1-ium chloride, C26H28Cl2N2O3
  41. Crystal structure of 2-(4-(2-(4-(2-fluorophenyl)piperazin-1-yl)ethyl)benzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide, C26H26FN3O3S – a saccharin dervative
  42. Crystal structure of 3-(2-dimethylaminoethyl)-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C12H15N3OS
  43. Crystal structure of 3-(3-dimethylaminopropyl)-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C13H17N3OS
  44. The crystal structure of trans-tetraaqua-bis(p-tolylsulfinato-κO)calcium(II)), C14H22O8S2Ca
  45. The crystal structure of (E)-N′-(pyridin-2-ylmethylene)pyrazine-2-carbohydrazide, C11H9N5O
  46. Crystal structure of (E)-3-(pyren-1-yl)-1-(pyridin-4-yl)prop-2-en-1-one, C24H15NO
  47. Crystal structure of catena-poly[diaqua-(μ2-tartrato-κ4O,O′:O′′,O′′′)cobalt(II)], C4H8CoO8
  48. Crystal structure of 4-chloro-2-methyl-6-(4-(trifluoromethoxy)phenyl)pyrimidine, C12H8ClF3N2O
  49. Crystal structure of 1-(4-fluorophenyl)-N-(5-((triphenylstannyl)thio)thiophen-2-yl)methanimine, C27H20FN3S2Sn
  50. Crystal structure of methyl (Z)-2-(5-fluoro-2-oxoindolin-3-ylidene)hydrazine-1-carbodithioate, C10H8FN3OS2
  51. Crystal structure of tert-butyl (Z)-4-(2-(5-methoxy-3-(2-((methylthio)carbonothioyl)hydrazono)-2-oxoindolin-1-yl)ethyl)piperazine-1-carboxylate, C22H31N5O4S2
  52. The crystal structure of (E)-2-((2-(o-tolylcarbamothioyl)hydrazono)methyl)benzoic acid, C16H15N3O2S
  53. Crystal structure of 2-chloro-1,3-di-tert-pentyl-4,4-diphenyl-1,3,2λ3,4-diazaphosphasiletidine, C22H32ClN2PSi
  54. Crystal structure of tetramethyl 5,5′-(buta-1,3-diyne-1,4-diyl)diisophthalate, C24H18O8
  55. Crystal structural of 2-amino-4-(4-methoxyphenyl)-3-cyano-7,7-dimethyl-5-oxo-4H-5,6,7,8-tetrahydrobenzo[b]pyran, C19H20N2O3
  56. Crystal structure of 1,3,5-tris((trimethylsilyl)methyl)-1,3,5-triazinane-2,4,6-trione, C15H33N3O3Si3
  57. The crystal structure of bis(2-benzoyl-5-hydroxylphenolato-κ2O,O′)copper(II), C26H18CuO6
  58. Crystal structure of 2,6-bis(3-(pyrazin-2-yl)-1H-1,2,4-triazol-5-yl)pyridine – 1-ethyl-3-methyl-1H-imidazol-3-ium bromide (1/1), C23H22N13Br
  59. The crystal structure of (E)-N-benzyl-N′-benzylidene-4-methylbenzenesulfonohydrazide, C21H20N2O2S
  60. Crystal structure of ethyl (E)-5-((2-(3-hydroxybenzoyl)hydrazono)methyl)-3,4-dimethyl-1H-pyrrole-2-carboxylate – water – ethanol (1/1/1), C19H27N3O6
  61. The crystal structure of (E)-4-(3-ethoxy-2-hydroxybenzylideneamino)benzoic acid, C16H15NO4
  62. Crystal structure of (μ2-N,N′-bis((pyridin-4-yl)methyl)ethanediamide-κ2N:N′)-tetrakis(diethylcarbamodithioato-κ2S,S′)dizinc(II), C34H54N8O2S8Zn2
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2017-0136/html
Button zum nach oben scrollen