Startseite Crystal structure of (OC-6-13)-diaqua-bis(3,5-di(pyridin-3-yl)-4H-1,2,4-triazol-4-amine-κ1N)-bis(dicyanamido-κ1N)zinc(II) tetrahydrate, ZnC28H32N18O6
Artikel Open Access

Crystal structure of (OC-6-13)-diaqua-bis(3,5-di(pyridin-3-yl)-4H-1,2,4-triazol-4-amine-κ1N)-bis(dicyanamido-κ1N)zinc(II) tetrahydrate, ZnC28H32N18O6

  • Xue-Yuan Wang , Xia Zhu EMAIL logo , Xin Lu und Jian-Qiao Wang
Veröffentlicht/Copyright: 5. Dezember 2017

Abstract

ZnC28H32N18O6, monoclinic, P21/c (no. 14), a = 10.472(2) Å, b = 21.668(4) Å, c = 8.1282(15) Å, β = 105.763(5)°, V = 1775.0(6) Å3, Z = 2, Rgt(F) = 0.0459, wRref(F2) = 0.1133, T = 298 K.

CCDC no.: 1584948

The crystal structure is shown in the figure. Hydrogen atoms are omitted for clarity. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

A methanolic solution (10 mL) of 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole (3-pytz) (1.0 mmol) was added slowly to an aqueous solution (10 mL) of Zn(NO3)2⋅6H2O (0.5 mmol) and Na[N(CN)2] (1.0 mmol) with stirring. The mixture was stirred at room temperature and the resultant solution was filtered. After the filtrate was allowed to stand for several days, colorless crystals of the title compound were obtained.

Table 1:

Data collection and handling.

Crystal:Block, colorless
Size:0.80 × 0.55 × 0.21 mm
Wavelength:Mo radiation (0.71073 Å)
μ:9.5 cm−1
Diffractometer, scan mode:Rigaku Mercury, ω-scans
θmax, completeness:25.4°, >99%
N(hkl)measured, N(hkl)unique, Rint:16857, 3239, 0.029
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2016
N(param)refined:259
Programs:CrystalClear [1], SHELX [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Zn10.00000.50000.50000.02939(15)
O10.20169(19)0.50834(9)0.4809(3)0.0366(4)
H1W0.271(2)0.4899(12)0.549(4)0.044*
H2W0.227(3)0.5463(8)0.473(4)0.044*
O20.4424(2)0.63024(11)0.7832(3)0.0549(6)
H3W0.483(3)0.5953(10)0.777(5)0.066*
H4W0.503(3)0.6591(11)0.799(5)0.066*
O30.2947(3)0.62391(11)0.4487(3)0.0609(7)
H5W0.250(3)0.6585(13)0.411(4)0.073*
H6W0.330(4)0.6321(17)0.561(2)0.073*
N10.0736(2)0.47660(10)0.7678(3)0.0291(5)
N20.5916(3)0.76225(12)1.2898(4)0.0607(8)
N30.4660(2)0.49527(10)1.2267(3)0.0348(5)
N40.5597(2)0.54070(10)1.2889(3)0.0367(5)
N50.3813(2)0.58422(9)1.1276(3)0.0286(5)
N60.2879(2)0.62675(11)1.0346(3)0.0421(6)
H6B0.21170.61410.97430.051*
H6C0.30690.66541.03800.051*
N70.0116(4)0.69394(15)0.6983(6)0.0834(12)
N80.0002(2)0.59388(11)0.5632(3)0.0422(6)
N90.1754(5)0.77466(19)0.7449(6)0.1021(15)
C10.0218(3)0.43072(12)0.8397(3)0.0329(6)
H1A−0.05280.41030.77400.039*
C20.0742(3)0.41257(13)1.0058(4)0.0361(6)
H2A0.03550.38061.05130.043*
C30.1855(3)0.44240(13)1.1052(3)0.0346(6)
H3A0.22330.43041.21780.042*
C40.2395(2)0.49052(11)1.0333(3)0.0282(5)
C50.1799(3)0.50582(11)0.8644(3)0.0280(5)
H5A0.21570.53810.81590.034*
C60.5247(3)0.70904(14)1.2728(5)0.0501(8)
H6A0.43630.71001.27440.060*
C70.5802(3)0.65265(12)1.2529(4)0.0338(6)
C80.7129(3)0.65176(14)1.2576(5)0.0490(8)
H8A0.75480.61461.24820.059*
C90.7827(3)0.70612(16)1.2763(6)0.0633(10)
H9A0.87210.70641.27950.076*
C100.7183(4)0.75956(16)1.2900(5)0.0624(10)
H10A0.76570.79631.30010.075*
C110.3605(2)0.52257(12)1.1302(3)0.0285(5)
C120.5075(2)0.59381(12)1.2281(3)0.0308(6)
C130.0126(3)0.64163(13)0.6226(4)0.0398(7)
C140.1030(4)0.73500(15)0.7168(5)0.0527(8)

Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms.

Discussion

Supramolecular structures are of great interest due to their structural characteristics, such as manifold coordination modes, intriguing architecture, and porosity, and also due to their physicochemical characteristics and potential applications as functional materials [3, 4] . The successful creation of higher-dimensional supramolecular architectures can be accomplished by employing coordination bonds, hydrogen bonds, aromatic π–π stacking interactions, etc. Recently, dicyanamide (dca) has been used as a building block in both supramolecular chemistry and crystal engineering [5, 6] .

In this paper, we select dicyanamide (dca) to react with Zn(II) ions and 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole (3-pytz) to obtain a new mononuclear complex. The asymmetric unit of the title structure consists of one half of a Zn2+ ion, one 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole (3-pytz), three water and one [N(CN)2]. Each Zn(II) atom is coordinated by two pyridyl nitrogen atoms from two different 3-pytz ligands, two nitrogen atom from the terminal dicyanamido ligand and two water molecules to furnish a [ZnN4O2] six-coordinate distorted octahedral geometry (cf. the figure). The Zn–O bond lengths are 2.167(2) Å, and the Zn–N distances are 2.098(2) and 2.163(2) Å, both of which are in the normal range. The bond angles around the Zn(II) are in the ranges of 89.74(9)–180°.

There are hydrogen bonding interactions between the lattice water molecules O2 and uncoordinated nitrogen atoms N3 and N2 from 3-pytz (O(2)-H(3W)⋯N(3)#2, O(2)-H(4W)⋯N(2)#3) to form a 1D chain. Furthermore, water molecules O3 interact with uncoordinated nitrogen atoms N9 from dca (O(3)-H(6W)⋯N(9)#3) to form 2D layers. Moreover, the coordinated water molecules and uncoordinated nitrogen atoms N4 from 3-pytz (O(1)-H(1W)⋯N(4)#2) link the 2D layers to form a 3D structure (#1 = −x, −y + 1, −z + 1; #2 = −x + 1, −y + 1, −z + 2; #3 = x, −y + 3/2, z − 1/2). The O2 atoms of lattice water molecules and adjacent oxygen atoms O(3) of the lattice water molecules are involved in the formation of O—H⋯O hydrogen bonds. The hydrogen-bonding interactions play an important role in stabilizing the solid-state [7, 8] .

Acknowledgements

We acknowledge support for the publication fee by Innovation and entrepreneurship fund for Undergraduates.

References

Rigaku/MSC: CrystalClear. Rigaku/MSC Inc., The Woodlands, TX, USA (2006).Suche in Google Scholar

Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Suche in Google Scholar

Mahmudov, K. T.; Kopylovich, M. N.; da Silva, M. F. C. G.; Pombeiro, A. J. L.: Non-covalent interactions in the synthesis of coordination compounds: Recent advances. Coord. Chem. Rev. 345 (2017) 54–72.10.1016/j.ccr.2016.09.002Suche in Google Scholar

Wang, X. F.; Du, K. J.; Wang, H. Q.; Zhang, X. L.; Nie, C. M.: A novel asymmetric chair-like hydroxyl-bridged tetra-copper compound: Synthesis, supramolecular structure and magnetic property. J. Mol. Struc. 1138 (2017) 155–160.10.1016/j.molstruc.2017.03.007Suche in Google Scholar

Zheng, L. L.; Zhou, C. X.; Hu, S.; Zhou, A. J.: Structural diversification of coordination assemblies of M-II-dca – Hydroxylpyridine (dca = Dicyanamide) Polyhedron. 104 (2016) 91–98.10.1016/j.poly.2015.11.007Suche in Google Scholar

Vahovska, L.; Potocnak, I.; Vitushkina, S.; Walko, M.: Low-dimensional compounds containing cyanido groups. Part XXX. Recrystallization of Co(II) complexes with pseudohalogenide ligands leading to CO2 uptake and formation of dicyanoguanidine anion in newly created Co(III) complexes. Polyhedron. 117 (2016) 359–366.10.1016/j.poly.2016.06.007Suche in Google Scholar

Tiekink, E. R. T.: Supramolecular assembly based on ”emerging” intermolecular interactions of particular interest to coordination chemists. Coord. Chem. Rev. 345 (2017) 207–228.10.1016/j.ccr.2017.01.009Suche in Google Scholar

Beatty, A. M.: Open-framework coordination complexes from hydrogen-bonded network: toward Host Guest Complexes. Coord. Chem. Rev. 246 (2003) 131–143.10.1016/S0010-8545(03)00120-6Suche in Google Scholar

Received: 2017-7-13
Accepted: 2017-11-10
Published Online: 2017-12-5
Published in Print: 2018-1-26

©2018 Xue-Yuan Wang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Artikel in diesem Heft

  1. Cover and Frontmatter
  2. Editorial 2018
  3. Crystal structure of dimethanol-bis{3-(((2-oxidonaphthalen-1-yl)methylene)amino)-2-oxo-2H-chromen-4-olato-κ3O,N:O′}dizinc(II), C42H30Zn2N2O10
  4. Crystal structure of aqua-bis{[2,6-dimethyl-N-(pyridin-2-ylmethylene)aniline-κ2N,N′]}zinc(II) triflate monohydrate [ZnC29H31N4O]CF3SO3⋅H2O
  5. Crystal structure of (E)-1-(4-{[(E)-4-Diethylamino-2-hydroxybenzene methylene]amino}phenyl)ethanone methoxy oxime, C20H27ClN3O3
  6. Crystal structure of (E)-1-(4-(((E)-4-(diethylamino)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one oxime, C19H23N3O2
  7. Crystal structure of poly[(μ2-1,4-bis((2-ethyl-1H-benzo[d]imidazol-1-yl)methyl)benzene-κ2N:N′)-(μ2-4,4′-sulfonyldibenzoato-κ2O:O′)zinc(II)], C40H34N4O6SZn
  8. Crystal structure of catena-poly[diaqua(μ3-pyrazine-2,3-dicarboxylato-κ4O,N:O′:O′′)zinc(II)] 1.25 hydrate, C6H8.5N2O7.25Zn
  9. Crystal structure of fac-(acetylacetonato-κ2O,O′)tricarbonyl(tri-m-tolyl phosphane-κP)rhenium(I), C29H28O5PRe
  10. Crystal structure of bis(μ2-methanolato-κ2O:O)-bis(methanol-κ1O)-bis{3-((4-methoxy-2-oxidobenzylidene)amino)-2-oxo-2H-chromen-4-olato-κ3O,O′,N}dichromium(III), C38H36Cr2N2O14
  11. Crystal structure of poly[aqua-(μ3-pyridine-3,5-dicarboxylato-κ5O,O′:O′′,O′′′,N)zinc(II)], C7H7NO6Zn
  12. Crystal structure of bis((1-(((4-(((benzyloxy)imino)methyl)phenyl)imino)methyl)naphthalen-2-yl)oxy-κ2O,N)copper(II), C52H42CuN4O4
  13. Crystal structure of bis{5-(diethylamino)-2-(((2-oxo-2H-chromen-6-yl)imino)methyl)phenolato-κ2O,N}cobalt(II), C40H38CoN4O6
  14. Crystal structure of diaqua-bis(N,N-dimethylformamide-κ1O)-bis{3-((5-chloro-2-oxidobenzylidene)amino)-2-oxo-2H-chromen-4-olato-κ4N,O,O′:O′}dinickel(II), C38H34Ni2Cl2N4O12
  15. Crystal structure of tetrakis(methanol-κO)bis{3-((4-methoxy-2-oxidobenzylidene)amino)-2-oxo-2H-chromen-4-olato-κ3O,N,O′}bicobalt(II), C38H38Co2N2O14
  16. Crystal structure of (S)-tert-butyl-(1-hydroxypropan-2-yl)carbamate, C8H17NO3
  17. Crystal structure of 4-(4′-(pyridin-4-yl)-[1,1′-biphenyl]-4-yl)pyridin-1-ium catena-poly[{5-carboxy-4′-methyl-[1,1′-biphenyl]-3-carboxylato-κ2O,O′}-(μ2-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-κ4O,O′:O′′,O′′′)lead(II)], C52H40N2O9Pb
  18. Crystal structure of catena-poly[diaqua-(μ2-5-methylisophthalato-κ2O:O′)(μ2-1,4-bis((1H-1,2,4-triazol-1-yl)methyl)benzene-κ2N:N′)], NiC21H22O6N6
  19. Crystal structure of the salt tris(guanidinium) tris(tetrapropylammonium) bis(pyridine-2,4,6-tricarboxylate) – water (1/10), C55H126N14O22
  20. Crystal structure of 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,7,8-trimethoxy-4H-chromen-4-one, C19H18O8
  21. Crystal structure of poly{[μ2-1,1′-(sulfonylbis(4,1-phenylene))bis(2-methyl-1H-imidazole)-κ2N:N′][μ2-4,4′-oxydibenzoato-κ2O:O′]cobalt(II)} hemihydrate, C34H27N4O7.5SCo
  22. The crystal structure of 25,27-(2,2′-[(2-thioxo-1,3-dithiole-4,5-diyl)disulfanediyl]diethanolate)-26,28-dihydroxycalix[4]arene — dichloromethane (1/1), C36H32Cl2O4S5
  23. The crystal structure of 1,2-bis(3-(pyridin-3-yl)-1,2,4-oxadiazol-5-yl)ethane, C16H12N6O2
  24. Crystal structure of 1-benzyl-3-((4-bromophenyl)amino)-4-(4-methoxyphenyl)-1H-pyrrole-2,5-dione, C24H19BrN2O3
  25. Crystal structure of bis(2-((allylcarbamothioyl)imino)-4-methylthiazol-3-ido-κ2N,S)palladium(II), C16H20N6PdS4
  26. Crystal structure of pyrimidine-2,5-dicarboxylic acid 1.5 hydrate, C12H14N4O11
  27. Crystal structure of trans-diaqua-bis(1H-pyrazole-3-carboxylato-κ2N,O)manganese(II), C8H10N4O6Mn
  28. Crystal structure of catena-(μ3-5-bromoisophthatato-κO,O′: O′′,O′′′′)-(1,2-bis(imidazol-1-yl)ethane-κN:N′)cobalt(II), C16H13CoN4O4Br
  29. Investigation of the compound La5Zn2−xPb1 + x (x = 0.20–0.32)
  30. Crystal structure of (OC-6-13)-diaqua-bis(3,5-di(pyridin-3-yl)-4H-1,2,4-triazol-4-amine-κ1N)-bis(dicyanamido-κ1N)zinc(II) tetrahydrate, ZnC28H32N18O6
  31. Crystal structure of Ga0.62(3)Sb0.38(3)Pd3
  32. Crystal structure of Ga0.47(1)Sb0.53(1)Pd2
  33. A derivative of the Corey lactone – crystal structure of (3aR,4S,5R,6aS)-4-(((tert-butyldimethylsilyl)oxy)methyl)-2-oxohexahydro-2H-cyclopenta[b]furan-5-yl benzoate, C21H30O5Si
  34. A Corey lactone: crystal structure of (3aR,4R,5R,6aS)-5-benzoyloxy-4(hydroxymethyl)hexahydro-2H-cyclopenta[b]furan-2-one, C15H16O5
  35. Hydrothermal synthesis and crystal structure of poly[aqua-(μ2-1,3-bis(4-pyridyl)propane-κ2N:N′)-(μ2-1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylato-κ2O:O′)manganese(II) hydrate, C22H20Cl6N2O6Mn
  36. Crystal structure of 2-acetylpyrrole S-methylthiosemicarbazonium hydroiodide, C8H13IN4S
  37. Crystal structure of [N,N-bis((pyrrol-2-yl)ethylidene)butane-1,4-diamine-κ4N,N′,N′′,N′′′]-nickel(II), C16H20N4Ni
  38. Crystal structure of poly[aqua-(μ5-2,5-dicarboxybenzoato-κ5O:O:O′:O′′:O′′′)sodium(I)], C9H7NaO7
  39. Crystal structure of bis(N′-((1H-pyrrol-2-yl)methylene)-1-methylthio-methanethiohydrazido-κ2S,N)nickel(II), C14H16N6NiS4
  40. Crystal structure of 1-(4-((benzo[d][1,3]dioxol-5-yloxy)methyl)phenethyl)-4-(3-chlorophenyl) piperazin-1-ium chloride, C26H28Cl2N2O3
  41. Crystal structure of 2-(4-(2-(4-(2-fluorophenyl)piperazin-1-yl)ethyl)benzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide, C26H26FN3O3S – a saccharin dervative
  42. Crystal structure of 3-(2-dimethylaminoethyl)-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C12H15N3OS
  43. Crystal structure of 3-(3-dimethylaminopropyl)-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C13H17N3OS
  44. The crystal structure of trans-tetraaqua-bis(p-tolylsulfinato-κO)calcium(II)), C14H22O8S2Ca
  45. The crystal structure of (E)-N′-(pyridin-2-ylmethylene)pyrazine-2-carbohydrazide, C11H9N5O
  46. Crystal structure of (E)-3-(pyren-1-yl)-1-(pyridin-4-yl)prop-2-en-1-one, C24H15NO
  47. Crystal structure of catena-poly[diaqua-(μ2-tartrato-κ4O,O′:O′′,O′′′)cobalt(II)], C4H8CoO8
  48. Crystal structure of 4-chloro-2-methyl-6-(4-(trifluoromethoxy)phenyl)pyrimidine, C12H8ClF3N2O
  49. Crystal structure of 1-(4-fluorophenyl)-N-(5-((triphenylstannyl)thio)thiophen-2-yl)methanimine, C27H20FN3S2Sn
  50. Crystal structure of methyl (Z)-2-(5-fluoro-2-oxoindolin-3-ylidene)hydrazine-1-carbodithioate, C10H8FN3OS2
  51. Crystal structure of tert-butyl (Z)-4-(2-(5-methoxy-3-(2-((methylthio)carbonothioyl)hydrazono)-2-oxoindolin-1-yl)ethyl)piperazine-1-carboxylate, C22H31N5O4S2
  52. The crystal structure of (E)-2-((2-(o-tolylcarbamothioyl)hydrazono)methyl)benzoic acid, C16H15N3O2S
  53. Crystal structure of 2-chloro-1,3-di-tert-pentyl-4,4-diphenyl-1,3,2λ3,4-diazaphosphasiletidine, C22H32ClN2PSi
  54. Crystal structure of tetramethyl 5,5′-(buta-1,3-diyne-1,4-diyl)diisophthalate, C24H18O8
  55. Crystal structural of 2-amino-4-(4-methoxyphenyl)-3-cyano-7,7-dimethyl-5-oxo-4H-5,6,7,8-tetrahydrobenzo[b]pyran, C19H20N2O3
  56. Crystal structure of 1,3,5-tris((trimethylsilyl)methyl)-1,3,5-triazinane-2,4,6-trione, C15H33N3O3Si3
  57. The crystal structure of bis(2-benzoyl-5-hydroxylphenolato-κ2O,O′)copper(II), C26H18CuO6
  58. Crystal structure of 2,6-bis(3-(pyrazin-2-yl)-1H-1,2,4-triazol-5-yl)pyridine – 1-ethyl-3-methyl-1H-imidazol-3-ium bromide (1/1), C23H22N13Br
  59. The crystal structure of (E)-N-benzyl-N′-benzylidene-4-methylbenzenesulfonohydrazide, C21H20N2O2S
  60. Crystal structure of ethyl (E)-5-((2-(3-hydroxybenzoyl)hydrazono)methyl)-3,4-dimethyl-1H-pyrrole-2-carboxylate – water – ethanol (1/1/1), C19H27N3O6
  61. The crystal structure of (E)-4-(3-ethoxy-2-hydroxybenzylideneamino)benzoic acid, C16H15NO4
  62. Crystal structure of (μ2-N,N′-bis((pyridin-4-yl)methyl)ethanediamide-κ2N:N′)-tetrakis(diethylcarbamodithioato-κ2S,S′)dizinc(II), C34H54N8O2S8Zn2
Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2017-0178/html
Button zum nach oben scrollen