Home Crystal structure of the salt tris(guanidinium) tris(tetrapropylammonium) bis(pyridine-2,4,6-tricarboxylate) – water (1/10), C55H126N14O22
Article Open Access

Crystal structure of the salt tris(guanidinium) tris(tetrapropylammonium) bis(pyridine-2,4,6-tricarboxylate) – water (1/10), C55H126N14O22

  • Yanbing Zai , Linlin Zhu and Xiangxiang Wu EMAIL logo
Published/Copyright: December 1, 2017

Abstract

C55H126N14O22, monoclinic, Cc (no. 9), a = 44.1382(7) Å, b = 8.18540(10) Å, c = 21.8699(3) Å, β = 109.2070(10)°, V = 7461.53(19) Å3, Z = 4, Rgt(F) = 0.0418, wRref(F2) = 0.1187, T = 296 K.

CCDC no.:: 1583799

The asymmetric unit of the title crystal structure is shown in the figure. Hydrogen atoms at the tetrapropylammonium cations are omitted for clarity. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Block, colorless
Size:0.55 × 0.53 × 0.440 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.09 mm−1
Diffractometer, scan mode:Bruker SMART, φ and ω-scans
θmax, completeness:27.7°, >99%
N(hkl)measured, N(hkl)unique, Rint:24874, 14189, 0.018
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 12394
N(param)refined:820
Programs:Bruker programs [1], SHELX [2, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
O10.41338(4)0.2572(2)0.13734(8)0.0490(4)
O1W0.25981(9)0.2608(3)0.32685(14)0.0930(8)
H1WA0.26070.30650.29210.139*
H1WB0.27930.24200.35120.139*
O20.36825(5)0.3047(3)0.05752(8)0.0621(5)
O2W0.19786(7)0.1469(6)0.33569(13)0.1146(12)
H2WA0.18490.13360.29750.172*
H2WB0.21570.17970.33320.172*
O30.26768(4)0.3790(3)0.11113(10)0.0616(5)
O3W0.07209(6)0.8725(4)0.50766(10)0.0762(7)
H3WA0.07650.86310.47250.114*
H3WB0.08910.90460.53760.114*
O40.26622(4)0.2945(3)0.20612(9)0.0604(5)
O4W0.18578(6)−0.1689(5)0.39896(12)0.1003(10)
H4WA0.1671−0.14700.39990.150*
H4WB0.1864−0.06550.39610.150*
O50.36909(4)0.0796(3)0.36646(8)0.0563(5)
O5W0.32376(7)0.5207(4)-0.01797(14)0.0978(9)
H5WA0.33470.43900.00250.147*
H5WB0.31350.56110.00600.147*
O60.41332(4)0.0863(3)0.33975(8)0.0616(5)
O6W0.01498(8)0.8388(6)0.5208(2)0.1262(12)
H6WA0.03450.84710.51990.189*
H6WB0.01100.73480.52090.189*
O70.15556(4)0.1038(3)0.20877(8)0.0607(5)
O7W0.32183(9)0.2053(4)0.4103(2)0.1137(11)
H7WB0.33600.14160.40360.171*
H7WA0.33120.29780.42260.171*
O80.12321(5)0.0215(3)0.11319(8)0.0620(5)
O8W0.51141(7)−0.0130(6)0.52149(16)0.1283(14)
H8WA0.5120−0.10280.54140.192*
H8WB0.5140−0.11270.51340.192*
O90.01352(6)−0.1698(4)0.09118(9)0.0938(10)
O9W0.26619(9)0.5738(4)0.00668(15)0.1034(9)
H9WA0.26610.50940.03710.155*
H9WB0.28480.58240.03450.155*
O10−0.00177(4)−0.1747(3)0.17795(9)0.0641(5)
O10W0.20638(12)0.4616(6)0.4061(2)0.1530(17)
H10F0.22440.45110.43600.230*
H10G0.20410.37160.38570.230*
O110.07514(5)−0.1498(3)0.38733(8)0.0621(5)
O120.12618(4)−0.0986(3)0.40185(7)0.0585(5)
N10.38152(4)0.2076(2)0.22193(8)0.0344(4)
N20.05995(4)−0.1269(2)0.25666(8)0.0381(4)
N30.44662(5)−0.2069(3)0.55103(9)0.0448(4)
H3A0.4665−0.23810.55900.067*
H3B0.4366−0.22060.58110.067*
N40.39863(5)−0.1242(3)0.47879(9)0.0469(5)
H4B0.3882−0.17420.50140.070*
H4C0.3871−0.06480.44450.070*
N50.44477(5)−0.0949(3)0.45343(9)0.0494(5)
H5A0.4653−0.08790.47100.074*
H5B0.4333−0.03640.41690.074*
N60.19805(5)1.2223(3)0.13598(10)0.0537(5)
H6B0.21921.23940.15820.081*
H6A0.18681.18580.15780.081*
N70.15835(5)1.1591(3)0.04167(10)0.0496(5)
H7A0.14781.12360.06600.074*
H7B0.15021.1464-0.00030.074*
N80.20705(5)1.2519(3)0.03949(10)0.0537(5)
H8A0.22511.28840.06000.080*
H8B0.20411.21570.00080.080*
N90.47952(7)0.1947(4)0.37493(12)0.0714(7)
H9A0.49620.21210.40720.107*
H9B0.46100.16550.37890.107*
N100.45704(6)0.1964(3)0.26545(11)0.0558(5)
H10B0.43770.19250.26040.084*
H10C0.46220.23280.22560.084*
N110.50897(6)0.2749(4)0.31075(13)0.0701(7)
H11B0.52600.27410.34140.105*
H11A0.50900.29710.27290.105*
N120.43798(5)0.7371(2)0.15042(11)0.0493(5)
N130.27118(6)0.7568(3)0.29611(12)0.0542(5)
N140.10688(6)0.3669(2)0.47009(10)0.0523(5)
C10.36529(5)0.2666(3)0.16278(9)0.0337(4)
C20.33303(5)0.3079(3)0.14411(10)0.0373(4)
H2A0.32260.34900.10290.045*
C30.31641(5)0.2874(3)0.18744(10)0.0356(4)
C40.33291(5)0.2256(3)0.24817(10)0.0369(4)
H4A0.32250.21060.27850.044*
C50.36523(5)0.1864(3)0.26324(9)0.0347(4)
C60.38417(5)0.2774(3)0.11553(10)0.0375(4)
C70.28047(5)0.3244(3)0.16691(11)0.0418(5)
C80.38425(5)0.1122(3)0.32896(10)0.0403(5)
C90.10572(5)−0.0178(3)0.20299(9)0.0359(4)
C100.07509(5)−0.0611(3)0.16405(9)0.0395(5)
H10A0.0694−0.05520.11920.047*
C110.05297(5)−0.1133(3)0.19246(10)0.0386(5)
C120.08977(5)−0.0905(3)0.29415(9)0.0354(4)
C130.11305(5)−0.0328(3)0.26953(9)0.0372(4)
H13A0.1333−0.00450.29730.045*
C140.13041(5)0.0414(3)0.17313(10)0.0424(5)
C150.01848(6)−0.1572(4)0.15083(11)0.0518(6)
C160.09751(5)−0.1154(3)0.36716(10)0.0403(5)
C170.43015(5)−0.1424(3)0.49446(10)0.0380(4)
C180.18789(5)1.2094(3)0.07192(11)0.0404(5)
C190.48228(5)0.2233(3)0.31654(11)0.0435(5)
C200.43761(7)0.6259(3)0.09420(13)0.0511(6)
H20A0.45700.56070.10730.061*
H20B0.41960.55140.08590.061*
C210.43521(10)0.7135(4)0.03127(16)0.0704(9)
H21A0.41700.78720.01970.084*
H21B0.45440.77820.03750.084*
C220.43141(13)0.5940(5)-0.02263(17)0.0885(12)
H22A0.43000.6521-0.06160.133*
H22B0.44960.5222-0.01150.133*
H22C0.41220.5312-0.02920.133*
C230.40785(7)0.8436(3)0.13237(16)0.0610(7)
H23A0.40870.91100.16940.073*
H23B0.40810.91610.09750.073*
C240.37661(9)0.7510(5)0.1116(2)0.0829(11)
H24A0.37510.68630.07360.100*
H24B0.37620.67670.14590.100*
C250.34863(11)0.8623(7)0.0967(4)0.130(2)
H25A0.32920.79930.08370.195*
H25B0.34980.92500.13450.195*
H25C0.34870.93470.06220.195*
C260.43914(7)0.6262(3)0.20704(13)0.0521(6)
H26A0.42210.54590.19210.063*
H26B0.45940.56770.22010.063*
C270.43575(10)0.7109(4)0.26623(15)0.0692(8)
H27A0.45280.79070.28230.083*
H27B0.41540.76800.25440.083*
C280.43746(11)0.5884(5)0.31843(17)0.0767(9)
H28A0.43530.64360.35550.115*
H28B0.42040.51030.30260.115*
H28C0.45770.53300.33050.115*
C290.46673(7)0.8510(3)0.16808(15)0.0566(7)
H29A0.46430.92420.13190.068*
H29B0.46640.91720.20460.068*
C300.49898(8)0.7699(5)0.1850(2)0.0744(9)
H30A0.50050.71190.14740.089*
H30B0.50120.69080.21920.089*
C310.52582(11)0.8926(6)0.2070(2)0.0975(13)
H31A0.54610.83720.21740.146*
H31B0.52390.97000.17290.146*
H31C0.52460.94890.24460.146*
C320.27309(9)0.8665(4)0.24121(16)0.0658(8)
H32A0.25450.93780.22900.079*
H32B0.29190.93520.25770.079*
C330.27461(10)0.7822(4)0.18125(18)0.0742(9)
H33A0.25710.70480.16640.089*
H33B0.29460.72210.19130.089*
C340.27245(11)0.9053(5)0.12786(19)0.0801(10)
H34A0.27350.84890.09010.120*
H34B0.25250.96370.11740.120*
H34C0.29000.98090.14240.120*
C350.24084(7)0.6532(3)0.27433(15)0.0565(6)
H35A0.24210.58050.24030.068*
H35B0.24040.58580.31050.068*
C360.20965(8)0.7456(5)0.24985(18)0.0740(9)
H36A0.20970.81470.21390.089*
H36B0.20740.81510.28400.089*
C370.18164(9)0.6283(7)0.2280(2)0.0954(13)
H37A0.16200.68890.21260.143*
H37B0.18380.56050.19380.143*
H37C0.18140.56090.26380.143*
C380.27122(8)0.8673(3)0.35182(15)0.0597(7)
H38A0.29080.93110.36420.072*
H38B0.25350.94320.33610.072*
C390.26874(10)0.7856(5)0.41176(18)0.0758(9)
H39A0.24820.73100.40150.091*
H39B0.28540.70360.42660.091*
C400.27208(12)0.9079(7)0.4647(2)0.0962(13)
H40A0.27040.85310.50230.144*
H40B0.29260.96070.47540.144*
H40C0.25540.98810.45030.144*
C410.29898(7)0.6385(4)0.31659(18)0.0641(8)
H41A0.29810.57020.27980.077*
H41B0.29630.56790.35010.077*
C420.33194(9)0.7162(5)0.3418(3)0.0945(13)
H42A0.33350.80200.31240.113*
H42B0.33480.76580.38360.113*
C430.35744(10)0.5968(8)0.3484(3)0.128(2)
H43A0.37790.65020.36440.191*
H43B0.35620.51280.37820.191*
H43C0.35490.54900.30690.191*
C440.11072(9)0.4671(4)0.41461(14)0.0641(7)
H44A0.12870.54070.43180.077*
H44B0.09170.53350.39650.077*
C450.11607(12)0.3676(5)0.36021(17)0.0821(10)
H45A0.13550.30330.37720.099*
H45B0.09820.29300.34250.099*
C460.11890(13)0.4782(7)0.30784(18)0.0975(13)
H46A0.12230.41400.27390.146*
H46B0.09950.54060.29070.146*
H46C0.13670.55090.32540.146*
C470.07818(8)0.2553(4)0.44651(16)0.0644(8)
H47A0.07650.19410.48320.077*
H47B0.08210.17730.41650.077*
C480.04622(9)0.3380(6)0.4133(2)0.0921(12)
H48A0.04230.42050.44170.111*
H48B0.04670.39130.37400.111*
C490.01966(13)0.2120(9)0.3971(5)0.165(3)
H49A−0.00050.26450.37610.247*
H49B0.02350.13120.36870.247*
H49C0.01920.16040.43610.247*
C500.10278(8)0.4860(3)0.51973(14)0.0585(7)
H50A0.12190.55360.53470.070*
H50B0.08490.55730.49840.070*
C510.09708(9)0.4109(4)0.57803(15)0.0680(8)
H51A0.11420.33420.59850.082*
H51B0.07700.35120.56430.082*
C520.09592(12)0.5409(6)0.62629(17)0.0909(12)
H52A0.09230.49050.66290.136*
H52B0.11590.59890.64040.136*
H52C0.07880.61590.60620.136*
C530.13618(7)0.2587(4)0.49993(14)0.0582(7)
H53A0.13310.19720.53530.070*
H53B0.13770.18090.46760.070*
C540.16752(9)0.3518(5)0.5251(2)0.0844(10)
H54A0.16980.42220.49130.101*
H54B0.16730.42010.56120.101*
C550.19526(11)0.2369(8)0.5466(4)0.127(2)
H55A0.21490.29800.56240.190*
H55B0.19310.16830.58060.190*
H55C0.19560.17040.51070.190*

Source of material

Samples of 2,4,6-pyridine-tricarboxylic acid (0.25 mmol) and guanidine hydrochloride were separately dissolved in water-ethanol (50/100 v/v) according to a 1:3 molar ratio. Tetrapropylammonium hydroxide (30% solution, C. R.) was carefully added to obtain a solution with a 1:3 molar ratio of acid to hydroxide. The mixture was stirred for about 2 h and set aside to crystallize, finally yielding colorless block crystals suitable for single crystal X-ray diffraction.

Experimental details

The H atoms bonded to C were localized in the ideal positions and all H atoms bonded to O atoms were searched with Q peaks and refined with the O—H distance restrained to 0.86 Å. The Uiso values of the hydrogen atoms bonded to O were set to 1.5Ueq(O).

Discussion

2,4,6-Pyridine-tricarboxylic acid can be regarded as a triangular molecule that can form lots of various hydrogen bonds due to its carboxyl groups and the nitrogen atom. Under basic conditions, the planar acid tends to lose its protons to form a triangular anion that can act as a good hydrogen bond acceptor. The guanidinium cation is a triangular hydrogen bond donor. Thus, combining 2,4,6-pyridine-tricarboxylic acid with guanidinium under basic conditions should lead to the formation of interesting hydrogen-bonded frameworks. In the literatures, it was found that the acid and guanidine can generate different crystal structures with the existence of tetraalkylammonium hydroxides [4].

In the asymmetric unit of the title compound, there are three crystallographically independent 2,4,6-pyridine-tricarboxylate anions, three guanidinium cations, three tetrapropylammonium cations and ten water molecules. Obviously, after the total deprotonation of 2,4,6-pyridine-tricarboxylic acid. All bond lengths and angles are in the expected ranges [5]. The anions link with different triangular cations to form the complicated hydrogen-bonded framework which contains the ten water molecules. It is very clear that the anions are hydrogen-bond acceptors and the triangular cations are donors, and water molecules play crucial linkage roles in further constructing the 3-D framework with cavities that can contain tetrapropylammonium cations. Undoubtedly, N—H⋯O and O—H⋯O hydrogen bonds are important interactions in forming the stable crystal structure.

Acknowledgements

We thank for the support from Henan University of Traditional Chinese Medicine.

References

Bruker: APEX2 and SAINT. Bruker AXS Inc., Madison, WI, USA (2007).Search in Google Scholar

Sheldrick, G. M.: SADABS. University of Göttingen, Germany (1996).Search in Google Scholar

Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

Yang, Y. Y.; Li, Q.: Synthesis and crystal structures of 2, 4, 6-pyridine-tricarboxylic anions/guanidinium and tetraalkylammonium inclusion compounds. J. Incl. Phenom. Macrocycl. Chem. 72 (2012) 197–205.10.1007/s10847-011-9965-ySearch in Google Scholar

Zhu, X.; Liu, X.: Crystal structure of dodecaguanidinium bis(tetrapropylammonium) heptacarbonate, C43H128N38O21. Z. Kristallogr. NCS 232 (2017) 931–933.10.1515/ncrs-2017-0086Search in Google Scholar

Received: 2017-8-9
Accepted: 2017-11-3
Published Online: 2017-12-1
Published in Print: 2018-1-26

©2018 Yanbing Zai et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Cover and Frontmatter
  2. Editorial 2018
  3. Crystal structure of dimethanol-bis{3-(((2-oxidonaphthalen-1-yl)methylene)amino)-2-oxo-2H-chromen-4-olato-κ3O,N:O′}dizinc(II), C42H30Zn2N2O10
  4. Crystal structure of aqua-bis{[2,6-dimethyl-N-(pyridin-2-ylmethylene)aniline-κ2N,N′]}zinc(II) triflate monohydrate [ZnC29H31N4O]CF3SO3⋅H2O
  5. Crystal structure of (E)-1-(4-{[(E)-4-Diethylamino-2-hydroxybenzene methylene]amino}phenyl)ethanone methoxy oxime, C20H27ClN3O3
  6. Crystal structure of (E)-1-(4-(((E)-4-(diethylamino)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one oxime, C19H23N3O2
  7. Crystal structure of poly[(μ2-1,4-bis((2-ethyl-1H-benzo[d]imidazol-1-yl)methyl)benzene-κ2N:N′)-(μ2-4,4′-sulfonyldibenzoato-κ2O:O′)zinc(II)], C40H34N4O6SZn
  8. Crystal structure of catena-poly[diaqua(μ3-pyrazine-2,3-dicarboxylato-κ4O,N:O′:O′′)zinc(II)] 1.25 hydrate, C6H8.5N2O7.25Zn
  9. Crystal structure of fac-(acetylacetonato-κ2O,O′)tricarbonyl(tri-m-tolyl phosphane-κP)rhenium(I), C29H28O5PRe
  10. Crystal structure of bis(μ2-methanolato-κ2O:O)-bis(methanol-κ1O)-bis{3-((4-methoxy-2-oxidobenzylidene)amino)-2-oxo-2H-chromen-4-olato-κ3O,O′,N}dichromium(III), C38H36Cr2N2O14
  11. Crystal structure of poly[aqua-(μ3-pyridine-3,5-dicarboxylato-κ5O,O′:O′′,O′′′,N)zinc(II)], C7H7NO6Zn
  12. Crystal structure of bis((1-(((4-(((benzyloxy)imino)methyl)phenyl)imino)methyl)naphthalen-2-yl)oxy-κ2O,N)copper(II), C52H42CuN4O4
  13. Crystal structure of bis{5-(diethylamino)-2-(((2-oxo-2H-chromen-6-yl)imino)methyl)phenolato-κ2O,N}cobalt(II), C40H38CoN4O6
  14. Crystal structure of diaqua-bis(N,N-dimethylformamide-κ1O)-bis{3-((5-chloro-2-oxidobenzylidene)amino)-2-oxo-2H-chromen-4-olato-κ4N,O,O′:O′}dinickel(II), C38H34Ni2Cl2N4O12
  15. Crystal structure of tetrakis(methanol-κO)bis{3-((4-methoxy-2-oxidobenzylidene)amino)-2-oxo-2H-chromen-4-olato-κ3O,N,O′}bicobalt(II), C38H38Co2N2O14
  16. Crystal structure of (S)-tert-butyl-(1-hydroxypropan-2-yl)carbamate, C8H17NO3
  17. Crystal structure of 4-(4′-(pyridin-4-yl)-[1,1′-biphenyl]-4-yl)pyridin-1-ium catena-poly[{5-carboxy-4′-methyl-[1,1′-biphenyl]-3-carboxylato-κ2O,O′}-(μ2-4′-methyl-[1,1′-biphenyl]-3,5-dicarboxylato-κ4O,O′:O′′,O′′′)lead(II)], C52H40N2O9Pb
  18. Crystal structure of catena-poly[diaqua-(μ2-5-methylisophthalato-κ2O:O′)(μ2-1,4-bis((1H-1,2,4-triazol-1-yl)methyl)benzene-κ2N:N′)], NiC21H22O6N6
  19. Crystal structure of the salt tris(guanidinium) tris(tetrapropylammonium) bis(pyridine-2,4,6-tricarboxylate) – water (1/10), C55H126N14O22
  20. Crystal structure of 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,7,8-trimethoxy-4H-chromen-4-one, C19H18O8
  21. Crystal structure of poly{[μ2-1,1′-(sulfonylbis(4,1-phenylene))bis(2-methyl-1H-imidazole)-κ2N:N′][μ2-4,4′-oxydibenzoato-κ2O:O′]cobalt(II)} hemihydrate, C34H27N4O7.5SCo
  22. The crystal structure of 25,27-(2,2′-[(2-thioxo-1,3-dithiole-4,5-diyl)disulfanediyl]diethanolate)-26,28-dihydroxycalix[4]arene — dichloromethane (1/1), C36H32Cl2O4S5
  23. The crystal structure of 1,2-bis(3-(pyridin-3-yl)-1,2,4-oxadiazol-5-yl)ethane, C16H12N6O2
  24. Crystal structure of 1-benzyl-3-((4-bromophenyl)amino)-4-(4-methoxyphenyl)-1H-pyrrole-2,5-dione, C24H19BrN2O3
  25. Crystal structure of bis(2-((allylcarbamothioyl)imino)-4-methylthiazol-3-ido-κ2N,S)palladium(II), C16H20N6PdS4
  26. Crystal structure of pyrimidine-2,5-dicarboxylic acid 1.5 hydrate, C12H14N4O11
  27. Crystal structure of trans-diaqua-bis(1H-pyrazole-3-carboxylato-κ2N,O)manganese(II), C8H10N4O6Mn
  28. Crystal structure of catena-(μ3-5-bromoisophthatato-κO,O′: O′′,O′′′′)-(1,2-bis(imidazol-1-yl)ethane-κN:N′)cobalt(II), C16H13CoN4O4Br
  29. Investigation of the compound La5Zn2−xPb1 + x (x = 0.20–0.32)
  30. Crystal structure of (OC-6-13)-diaqua-bis(3,5-di(pyridin-3-yl)-4H-1,2,4-triazol-4-amine-κ1N)-bis(dicyanamido-κ1N)zinc(II) tetrahydrate, ZnC28H32N18O6
  31. Crystal structure of Ga0.62(3)Sb0.38(3)Pd3
  32. Crystal structure of Ga0.47(1)Sb0.53(1)Pd2
  33. A derivative of the Corey lactone – crystal structure of (3aR,4S,5R,6aS)-4-(((tert-butyldimethylsilyl)oxy)methyl)-2-oxohexahydro-2H-cyclopenta[b]furan-5-yl benzoate, C21H30O5Si
  34. A Corey lactone: crystal structure of (3aR,4R,5R,6aS)-5-benzoyloxy-4(hydroxymethyl)hexahydro-2H-cyclopenta[b]furan-2-one, C15H16O5
  35. Hydrothermal synthesis and crystal structure of poly[aqua-(μ2-1,3-bis(4-pyridyl)propane-κ2N:N′)-(μ2-1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylato-κ2O:O′)manganese(II) hydrate, C22H20Cl6N2O6Mn
  36. Crystal structure of 2-acetylpyrrole S-methylthiosemicarbazonium hydroiodide, C8H13IN4S
  37. Crystal structure of [N,N-bis((pyrrol-2-yl)ethylidene)butane-1,4-diamine-κ4N,N′,N′′,N′′′]-nickel(II), C16H20N4Ni
  38. Crystal structure of poly[aqua-(μ5-2,5-dicarboxybenzoato-κ5O:O:O′:O′′:O′′′)sodium(I)], C9H7NaO7
  39. Crystal structure of bis(N′-((1H-pyrrol-2-yl)methylene)-1-methylthio-methanethiohydrazido-κ2S,N)nickel(II), C14H16N6NiS4
  40. Crystal structure of 1-(4-((benzo[d][1,3]dioxol-5-yloxy)methyl)phenethyl)-4-(3-chlorophenyl) piperazin-1-ium chloride, C26H28Cl2N2O3
  41. Crystal structure of 2-(4-(2-(4-(2-fluorophenyl)piperazin-1-yl)ethyl)benzyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide, C26H26FN3O3S – a saccharin dervative
  42. Crystal structure of 3-(2-dimethylaminoethyl)-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C12H15N3OS
  43. Crystal structure of 3-(3-dimethylaminopropyl)-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C13H17N3OS
  44. The crystal structure of trans-tetraaqua-bis(p-tolylsulfinato-κO)calcium(II)), C14H22O8S2Ca
  45. The crystal structure of (E)-N′-(pyridin-2-ylmethylene)pyrazine-2-carbohydrazide, C11H9N5O
  46. Crystal structure of (E)-3-(pyren-1-yl)-1-(pyridin-4-yl)prop-2-en-1-one, C24H15NO
  47. Crystal structure of catena-poly[diaqua-(μ2-tartrato-κ4O,O′:O′′,O′′′)cobalt(II)], C4H8CoO8
  48. Crystal structure of 4-chloro-2-methyl-6-(4-(trifluoromethoxy)phenyl)pyrimidine, C12H8ClF3N2O
  49. Crystal structure of 1-(4-fluorophenyl)-N-(5-((triphenylstannyl)thio)thiophen-2-yl)methanimine, C27H20FN3S2Sn
  50. Crystal structure of methyl (Z)-2-(5-fluoro-2-oxoindolin-3-ylidene)hydrazine-1-carbodithioate, C10H8FN3OS2
  51. Crystal structure of tert-butyl (Z)-4-(2-(5-methoxy-3-(2-((methylthio)carbonothioyl)hydrazono)-2-oxoindolin-1-yl)ethyl)piperazine-1-carboxylate, C22H31N5O4S2
  52. The crystal structure of (E)-2-((2-(o-tolylcarbamothioyl)hydrazono)methyl)benzoic acid, C16H15N3O2S
  53. Crystal structure of 2-chloro-1,3-di-tert-pentyl-4,4-diphenyl-1,3,2λ3,4-diazaphosphasiletidine, C22H32ClN2PSi
  54. Crystal structure of tetramethyl 5,5′-(buta-1,3-diyne-1,4-diyl)diisophthalate, C24H18O8
  55. Crystal structural of 2-amino-4-(4-methoxyphenyl)-3-cyano-7,7-dimethyl-5-oxo-4H-5,6,7,8-tetrahydrobenzo[b]pyran, C19H20N2O3
  56. Crystal structure of 1,3,5-tris((trimethylsilyl)methyl)-1,3,5-triazinane-2,4,6-trione, C15H33N3O3Si3
  57. The crystal structure of bis(2-benzoyl-5-hydroxylphenolato-κ2O,O′)copper(II), C26H18CuO6
  58. Crystal structure of 2,6-bis(3-(pyrazin-2-yl)-1H-1,2,4-triazol-5-yl)pyridine – 1-ethyl-3-methyl-1H-imidazol-3-ium bromide (1/1), C23H22N13Br
  59. The crystal structure of (E)-N-benzyl-N′-benzylidene-4-methylbenzenesulfonohydrazide, C21H20N2O2S
  60. Crystal structure of ethyl (E)-5-((2-(3-hydroxybenzoyl)hydrazono)methyl)-3,4-dimethyl-1H-pyrrole-2-carboxylate – water – ethanol (1/1/1), C19H27N3O6
  61. The crystal structure of (E)-4-(3-ethoxy-2-hydroxybenzylideneamino)benzoic acid, C16H15NO4
  62. Crystal structure of (μ2-N,N′-bis((pyridin-4-yl)methyl)ethanediamide-κ2N:N′)-tetrakis(diethylcarbamodithioato-κ2S,S′)dizinc(II), C34H54N8O2S8Zn2
Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2017-0137/html
Scroll to top button