Startseite Crystal structure of (2-phenylimino methylquinoline-κ 2 N,N′)-bis(1–phenylpyrazole-κ 2 C,N)-iridium(III) hexafluorophosphate, C34H26F6IrN6P
Artikel Open Access

Crystal structure of (2-phenylimino methylquinoline-κ 2 N,N′)-bis(1–phenylpyrazole-κ 2 C,N)-iridium(III) hexafluorophosphate, C34H26F6IrN6P

  • Jun Qian ORCID logo EMAIL logo , Chunjie Chen , Liang Ma und Yida Wang
Veröffentlicht/Copyright: 18. September 2023

Abstract

C34H26F6IrN6P, monoclinic, P21/c (no. 4), a = 11.929(2) Å, b = 12.653(3) Å, c = 21.707(4) Å, β = 105.48(3), V = 3157.5(12) Å3, Z = 4, R gt(F) = 0.0241, wR ref(F 2) = 0.0461, T = 293 K.

CCDC no.: 2054827

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Red block
Size: 0.25 × 0.22 × 0.18 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 4.35 mm−1
Diffractometer, scan mode: Bruker P4, ω
θ max, completeness: 25.4°, >99 %
N(hkl)measured , N(hkl)unique, R int: 20,822, 5775, 0.027
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 5448
N(param)refined: 433
Programs: Bruker [1], Olex2 [2], SHELX [3, 4], PLATON [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Ir1 0.32696 (2) 0.71986 (2) 0.09915 (2) 0.01607 (4)
N1 0.4347 (2) 0.8041 (2) 0.16951 (12) 0.0203 (6)
N2 0.5384 (2) 0.7566 (2) 0.19722 (13) 0.0208 (6)
N3 0.2281 (2) 0.6153 (2) 0.03720 (12) 0.0198 (6)
N4 0.1854 (2) 0.5345 (2) 0.06583 (13) 0.0210 (6)
N5 0.3496 (2) 0.8318 (2) 0.02385 (12) 0.0189 (6)
N6 0.1826 (2) 0.8237 (2) 0.08551 (12) 0.0174 (6)
C1 0.4688 (3) 0.6248 (3) 0.11813 (15) 0.0189 (7)
C2 0.4868 (3) 0.5281 (3) 0.09188 (16) 0.0230 (7)
H2A 0.4291 0.5009 0.0579 0.028*
C3 0.5888 (3) 0.4709 (3) 0.11513 (17) 0.0297 (8)
H3A 0.5982 0.4067 0.0962 0.036*
C4 0.6760 (3) 0.5076 (3) 0.16554 (17) 0.0295 (8)
H4A 0.7441 0.4688 0.1803 0.035*
C5 0.6621 (3) 0.6028 (3) 0.19435 (16) 0.0256 (8)
H5A 0.7197 0.6284 0.2289 0.031*
C6 0.5597 (3) 0.6587 (3) 0.17020 (15) 0.0205 (7)
C7 0.5985 (3) 0.8146 (3) 0.24781 (16) 0.0293 (8)
H7A 0.6716 0.7989 0.2743 0.035*
C8 0.5319 (3) 0.9003 (3) 0.25272 (17) 0.0312 (9)
H8A 0.5506 0.9538 0.2831 0.037*
C9 0.4305 (3) 0.8915 (3) 0.20340 (16) 0.0241 (8)
H9A 0.3690 0.9393 0.1952 0.029*
C10 0.2748 (3) 0.6264 (2) 0.16138 (15) 0.0184 (7)
C11 0.2936 (3) 0.6386 (3) 0.22718 (16) 0.0238 (7)
H11A 0.3453 0.6900 0.2485 0.029*
C12 0.2363 (3) 0.5751 (3) 0.26139 (18) 0.0334 (9)
H12A 0.2480 0.5857 0.3050 0.040*
C13 0.1621 (3) 0.4961 (3) 0.23077 (19) 0.0362 (9)
H13A 0.1233 0.4547 0.2539 0.043*
C14 0.1449 (3) 0.4784 (3) 0.16627 (18) 0.0301 (9)
H14A 0.0966 0.4242 0.1456 0.036*
C15 0.2020 (3) 0.5436 (3) 0.13310 (16) 0.0212 (7)
C16 0.1357 (3) 0.4611 (3) 0.02180 (18) 0.0296 (8)
H16A 0.1013 0.3984 0.0296 0.036*
C17 0.1452 (3) 0.4958 (3) −0.03634 (18) 0.0319 (9)
H17A 0.1183 0.4620 −0.0756 0.038*
C18 0.2034 (3) 0.5922 (3) −0.02466 (16) 0.0247 (8)
H18A 0.2223 0.6342 −0.0556 0.030*
C19 0.4307 (3) 0.8339 (3) −0.01116 (15) 0.0211 (7)
C20 0.5198 (3) 0.7575 (3) −0.00041 (16) 0.0249 (8)
H20A 0.5255 0.7070 0.0314 0.030*
C21 0.5981 (3) 0.7572 (3) −0.03649 (17) 0.0315 (9)
H21A 0.6560 0.7060 −0.0291 0.038*
C22 0.5922 (3) 0.8329 (3) −0.08431 (18) 0.0384 (10)
H22A 0.6456 0.8312 −0.1086 0.046*
C23 0.5087 (3) 0.9087 (3) −0.09527 (17) 0.0344 (9)
H23A 0.5058 0.9590 −0.1269 0.041*
C24 0.4255 (3) 0.9121 (3) −0.05891 (16) 0.0258 (8)
C25 0.3377 (3) 0.9891 (3) −0.06961 (17) 0.0300 (8)
H25A 0.3341 1.0418 −0.0999 0.036*
C26 0.2579 (3) 0.9858 (3) −0.03506 (16) 0.0260 (8)
H26A 0.1988 1.0359 −0.0415 0.031*
C27 0.2660 (3) 0.9058 (3) 0.01035 (15) 0.0214 (7)
C28 0.1763 (3) 0.8979 (3) 0.04485 (15) 0.0210 (7)
H28A 0.1155 0.9463 0.0372 0.025*
C29 0.0874 (3) 0.8097 (2) 0.11386 (15) 0.0191 (7)
C30 0.1062 (3) 0.8151 (3) 0.17928 (16) 0.0246 (8)
H30A 0.1796 0.8322 0.2052 0.029*
C31 0.0159 (3) 0.7952 (3) 0.20621 (16) 0.0264 (8)
H31A 0.0287 0.7972 0.2504 0.032*
C32 −0.0928 (3) 0.7723 (3) 0.16789 (18) 0.0310 (8)
H32A −0.1536 0.7593 0.1862 0.037*
C33 −0.1124 (3) 0.7682 (3) 0.10241 (18) 0.0316 (9)
H33A −0.1865 0.7533 0.0767 0.038*
C34 −0.0217 (3) 0.7865 (3) 0.07464 (16) 0.0253 (8)
H34A −0.0342 0.7832 0.0305 0.030*
P1 0.07162 (8) 0.15347 (8) 0.13115 (4) 0.0276 (2)
F1 0.1301 (2) 0.22754 (18) 0.19060 (10) 0.0464 (6)
F2 0.18255 (17) 0.07723 (17) 0.14869 (10) 0.0403 (5)
F3 0.1319 (3) 0.2219 (2) 0.08776 (12) 0.0666 (8)
F4 0.0124 (2) 0.0802 (2) 0.07213 (12) 0.0602 (8)
F5 −0.0365 (2) 0.2311 (2) 0.11262 (14) 0.0731 (9)
F6 0.0133 (3) 0.0864 (2) 0.17514 (15) 0.0731 (9)

1 Source of materials

All the reagents were A. R. grade commercially available and used as received without further purification. The cyclometalated chloro-bridged iridium(III) dimer, [(ppz)2Ir(m–Cl)]2 (ppz = 1–phenylpyrazole), was synthesized following the reported literature procedures [6] by heating IrCl3·3H2O (1 equiv) and 1–phenylpyrazole (2.3 equiv) in a mixed solution of 2-ethoxyethanol and water (v/v = 3/1) at 135 °C. 149.3 mg quinoline-2-formaldehyde (0.95 mmol) was added into dichloromethane (20 mL) with strong stirring, and then aniline (0.95 mmol) was added dropwise to obtain 2-phenylimino methylquinoline (pmmq). The synthesized iridium(III) dimer [(ppz)2Ir(m–Cl)]2 (200.0 mg, 0.19 mmol) and ligand 2-phenylimino methylquinoline (90.1 mg, 0.388 mmol) were added together to a mixed solvent containing methanol (8 mL) and dichloromethane (32 mL). Subsequently, potassium hexafluorophosphate powder (37.6 mg, 0.19 mmol) was added, heated to 135 °C, and refluxed in a dark N2 atmosphere for 24 h. Dissolve the obtained solid product in dichloromethane (1 mL), after filtration, 0.5 mL of buffer layer (V dichloromethane/V n-hexane = 1/1) was added, and finally 3 mL of n-hexane was added. Red crystals were obtained after a week at room temperature in dark with a yield of 40 mg (43 % based Ir). Anal. Calcd. for C34H26F6IrN6P: C, 47.72 %; H, 3.06 %; N, 9.82 %. Found C, 47.69 %; H, 3.01 %; N, 9.84 %. IR (KBr, cm−1): 3057(W), 1662(s), 1592(s), 1547(s), 1514(s), 1492(s), 1411(s), 1020(m) (pyridine: C=N), 964(m), 845(w), 739(w), 692(w), 545(m).

2 Experimental details

The structure was solved by Direct Methods and refined using the Shelx software [3]. All of the hydrogen atoms were added by theoretical method and isotropic displacement parameters were given (U iso = 1.2 U eq, U eq is the equivalent isotropic displacement parameter of the parent atom) [5].

3 Comment

Cyclometalated iridium(III) complexes have received enormous interests, due to their potential applications in multidisciplinary areas such as organic light-emitting diodes (OLEDs), light-emitting electro-chemical cells (LECs), biosensing, photocatalysis, and nonlinear optics, etc. [7], [8], [9], [10]. The strong spin–orbit coupling induced by the Ir(III) ion results in efficient intersystem crossing (ISC) and promotes triplet excited-state formation, which are intrinsically related to aforementioned applications. Considerable efforts in this field are focused on the structural modifications of Ir(III) complexes to obtain desirable optical or electronic properties, especially for OLEDs and LECs applications [11, 12]. Recently, the design and synthesis of cyclometalated Ir(III) complexes with nonlinear optical properties has also been extensively developed [13]. For example, many researchers studied the second-order nonlinear optical properties [14], the reverse saturable absorption (RSA) [15], the two-photon and three-photon absorption (TPA) of Ir(III) complexes [16]. In this context, iminoquinoline ligand with p-conjugation structure has been employed as ancillary ligand into the preparation of cyclometalated Ir(III) complex.

The crystal structure consists of a Ir3+ cation, one pmmq ligand, two ppz ligands, and one PF6 anion (see the Figure). The Ir(III) center is 6-coordinated by four N atoms and two C atoms from two ppz ligands and the ancillary pmmq ligand, forming an octahedral plane. The Ir–C bond lengths are 2.027(3) Å and 2.014(3) Å, respectively, while the bond lengths of Ir–N range from 2.018(3) Å to 2.233(3) Å. The bond angles of N–Ir–N range from 75.97(10)° to 171.0(1)°, while the value for C–Ir–N fall in the range of 80.25(12)° and 176.16(11)° [17]. Due to the semi-rigid structure of iminoquinoline ligand, it forms a five membered chelating ring with the Ir(III) center through the bidentate chelation of quinoline nitrogen and imino nitrogen.


Corresponding author: Jun Qian, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 51602130

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by the funding for this research was provided by: National Natural Science Foundation of China (grant No. 51602130).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Saint, Apex2 and Sadabs; Bruker AXS Inc: Madison, Wisconsin, USA, 2009.Suche in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Spek, A. L. Single-crystal structure validation with the program PALTON. J. Appl. Crystallogr. 2003, 36, 7–13; https://doi.org/10.1107/s0021889802022112.Suche in Google Scholar

6. Kwon, T. H., Cho, H. S., Kim, M. K., Kim, J. W., Kim, J. J., Lee, K. H., Park, S. J., Shin, I. S., Kim, H., Shin, D. M., Chung, Y. K., Hong, J. I. Color tuning of cyclometalated iridium complexes through modification of phenylpyrazole derivatives and ancillary ligand based on ab initio calculations. Organometallics 2005, 24, 1578–1585; https://doi.org/10.1021/om049419e.Suche in Google Scholar

7. Zysman-Colman, E., Slinker, J. D., Parker, J. B., Malliaras, G. G., Bernhard, S. Improved turn-on times of light-emitting electrochemical cells. Chem. Mater. 2008, 20, 388–396; https://doi.org/10.1021/cm0713374.Suche in Google Scholar

8. Mondal, S., Seth, S. K., Gupta, P., Purkayastha, P. Ultrafast photoinduced electron transfer between carbon nanoparticles and cyclometalated rhodium and iridium complexes. J. Phys. Chem. C 2015, 119, 25122–25128; https://doi.org/10.1021/acs.jpcc.5b08633.Suche in Google Scholar

9. Sarma, M., Chatterjee, T., Bodapati, R., Krishnakanth, K. N., Hamad, S., Rao, V., Das, S. K. Cyclometalated iridium(III) complexes containing κ24,4′-p-conjugated κ22,2′-bipyridine derivatives as the ancillary ligands: synthesis, photophysics, and computational studies. Inorg. Chem. 2016, 55, 3530–3540; https://doi.org/10.1021/acs.inorgchem.5b02999.Suche in Google Scholar PubMed

10. Qiu, K., Ke, L., Zhang, X., Liu, Y., Rees, T. W., Ji, L., Diao, J., Chao, H. Tracking mitochondrial pH fluctuation during cell apoptosis with two-photon phosphorescent iridium(III) complexes. Chem. Commun. 2018, 54, 2421–2424; https://doi.org/10.1039/c8cc00299a.Suche in Google Scholar PubMed

11. Lee, S., Kim, S. O., Shin, H., Yun, H. J., Yang, K., Kwon, S. K., Kim, J. J., Kim, Y. H. Deep-blue phosphorescence from perfluoro carbonyl-substituted iridium complexes. J. Am. Chem. Soc. 2013, 135, 14321–14328; https://doi.org/10.1021/ja4065188.Suche in Google Scholar PubMed

12. Fan, C., Zhu, L., Jiang, B., Li, Y., Zhao, F., Ma, D., Qin, J., Yang, C. J. High power efficiency yellow phosphorescent OLEDs by using new iridium complexes with halogen-substituted 2-phenylbenzo[d]thiazole ligands. Phys. Chem. C 2013, 117, 19134–19141; https://doi.org/10.1021/jp406220c.Suche in Google Scholar

13. Sun, W. F., Pei, C., Lu, T., Cui, P., Li, Z., McCleese, C., Fang, Y., Kilina, S., Song, Y., Burda, C. Reverse saturable absorbing cationic iridium(III) complexes bearing the 2-(2-quinolinyl)quinoxaline ligand: effects of different cyclometalating ligands on linear and nonlinear absorption. J. Mater. Chem. C 2016, 4, 5059–5072; https://doi.org/10.1039/c6tc00710d.Suche in Google Scholar

14. Zaarour, M., Singh, A., Latouche, C., Williams, J. A. G., Ledoux-Rak, I., Zyss, J., Boucekkine, A., Bozec, H. L., Guerchais, V., Dragonetti, C., Colombo, A., Roberto, D., Valore, A. Linear and nonlinear optical properties of tris-cyclometalated phenylpyridine Ir(III) complexes incorporating p-conjugated substituents. Inorg. Chem. 2013, 52, 7987–7994; https://doi.org/10.1021/ic400541e.Suche in Google Scholar PubMed

15. Liu, B. Q., Lystrom, L., Brown, S. L., Hobbie, E. K., Kilina, S., Sun, W. F. Impact of benzannulation site at the diimine (NN̂) ligand on the excited-state properties and reverse saturable absorption of biscyclometalated iridium(III) complexes. Inorg. Chem. 2019, 58, 5483–5493; https://doi.org/10.1021/acs.inorgchem.8b03162.Suche in Google Scholar PubMed

16. Fan, Y., Ding, D., Zhao, D. Two-and three-photon absorption and excitation phosphorescence of oligofluorene-substituted Ir(ppy)3. Chem. Commun. 2015, 51, 3446–3449; https://doi.org/10.1039/c4cc09573a.Suche in Google Scholar PubMed

17. Chellan, P., Avery, V. M., Duffy, S., Triccas, J. A., Nagalingam, G., Tam, C., Cheng, L. W., Liu, J., Land, K. M., Clarkson, G. J., Romero-Caneln, I., Sadler, P. J. Organometallic conjugates of the drug sulfadoxine for combatting antimicrobial resistance. Chem. Eur. J. 2018, 24, 10078–10090; https://doi.org/10.1002/chem.201801090.Suche in Google Scholar PubMed

Received: 2023-08-17
Accepted: 2023-09-05
Published Online: 2023-09-18
Published in Print: 2023-12-15

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of bis(dimethylammonium) poly[(μ4-1,1′-(1,4-phenylenebis(methylene))bis(1H-pyrazole-3,5-dicarboxylato))-κ6O1, N2:O2:O3:O1′,N2′]nickel (II)], C22H26N6NiO8
  4. Hydrothermal synthesis and crystal structure of catena-poly[diaqua-bis(μ2-4-((pyridin-4-ylmethyl)amino)benzoato-κ2N:O)cobalt(II)] 4,4′-bipyridine – water (1/2/2)
  5. Crystal structure of (2S,3S,4S,5S, Z)-2,3,5,6-tetrakis(benzyloxy)-4-hydroxyhexanal oxime, C34H37NO6
  6. The crystal structure of hexakis(3-thiophenecarboxylato-κ2O,O″)-bis(1,10-phenanthroline-κ2N,N′) trimanganese(II), C54H34N4O12S6Mn3
  7. Crystal structure of catena-poly[(μ2-1,4-di(pyridin-4-yl)benzene-κ2N:N′)-(4-bromobenzoate-κ2O:O′)-(μ-2-bromobenzoate-κ2O,O′)nickel(II)] – water (2/1), C30H21Br2N2NiO4.5
  8. The crystal structure of poly[(μ3-1,3-phenylenedioxydiacetate-κ5O,O,O′,O″,O‴)-bis(4′-(4-(1H-imidazol-1-yl)phenyl)-4,2′:6′,4″-terpyridine-kN) cadmium(II)], C58H42CdN10O6
  9. The crystal structure of 5-chloro-6′-methyl-3-(4-(methylsulfonyl)phenyl)-[2,3′-bipyridin]-1′-ium 4-methylbenzenesulfonate
  10. Crystal structure of poly[(μ-benzoato)-(μ-cis-4–hydroxy-D-proline)lithium], C12H14LiNO5
  11. The crystal structure of catena-poly[aqua-(4-iodopyridine-2,6-dicarboxylato-κ3N,O,O)-copper(II)] monohydrate, C7H6NO6ICu
  12. The crystal structure of catena-[diaqua-(4-acetylphenoxyacetato-κ2O,O)-bis(4-acetylphenoxyacetato-κ3O,O:O)-dihydrate-lanthanum(III)]–4,4′-bipyridine (2/1), C35H35NO14La
  13. The crystal structure of catena-poly[(4-iodopyridine-2,6-dicarboxylato-κ4 O,N,O′,O′′)(4-imidazol-1-yl-pyridine-κN)copper(II)], C15H9N4O4ICu
  14. Crystal structure of polybis(μ 4-3,5-dicarboxylatopyrazol-1-yl)-bis(N,N-dimethylformamide)tri-copper(II)–acetonitrile (1/2), C20H22Cu3N8O10
  15. Crystal structure of poly[(μ2-5-hydroxy-isophthalato-κ4O,O′:O″,O‴)-(μ2-1,5-bis(imidazol-2-methyl)pentane-κ2N:N′)cadmium(II)], C21H24CdN4O5
  16. The crystal structure of poly[bis(μ2-1,4-bi(1-imidazolyl)benzene-κ2N:N′)bis(μ2-4,4′-methylenebis(3-hydroxy-2-naphthoate)-κ2O:O′)cobalt(II)], C35H24CoN4O6
  17. The crystal structure of a cobalt-vanadium-oxido hydrate
  18. The crystal structure of catena-poly[(μ 2-2H-1,2,3-triazole-4,5-dicarboxylato-κ 2 O, O′)-(μ 2-1,3-bis((1H-imidazol-1-yl)methyl)benzene-κ 2 N,N′) zinc(II)], C18H15N7O4Zn
  19. Crystal structure of poly[diaqua-(bis(m2-1,4-bis(imidazol-1-ylmethyl)benzene)-κ2N,N′-manganese] dichloride, C28H32MnN8O2Cl2
  20. The crystal structure of 9,10-dimethoxy-5,6-dihydro-[1,3]dioxolo[4,5-g]isoquinolino [3,2-a]isoquinolin-7-ium (E)-3-(4-nitrophenyl)acrylate pentahydrate, C29H34N2O13
  21. Crystal structure of poly[(μ6-ammoniotris(methylene))tris(hydrogen phosphonato)cadmium(II)], C3H10CdNO9P3
  22. Crystal structure of Zn2[(1,1′-(hexane-1,6-diyl)bis(3-(pyridin-3-yl)urea))·(H2O)2·(DMF)2·(SO4)2], C24H50N8O18S2Zn2
  23. The crystal structure of 2-anilino-1,4-naphthoquinone, C10H11NO2
  24. Crystal structure of (E)-2-(2-(4-(diethylamino)styryl)-1-ethyl-1,4-dihydroquinolin-4-yl) malononitrile, C26H26N4
  25. Crystal structure of ethyl 2-((2,6-dichloro-4-(cyanomethyl)phenyl) amino)benzoate, C17H14Cl2N2O2
  26. Synthesis and crystal structure of 2-(3-oxo-3-phenylpropyl)isoindoline-1,3-dione, C17H13NO3
  27. The crystal structure of bis(acetonitrile-κ1N)tetrakis(μ2-2,6-difluorobenzoato-κ2O:O′)rhodium(II) (Rh–Rh), C32H18F8O8N2Rh2
  28. The crystal structure of a new polymorph of 6-hydroxy-2-naphthoic acid, C11H8O3
  29. The crystal structure of [(8-carboxymethoxy-quinoline-2-carboxylate-κ4N,O,O,O)-2,2′-bipyridine-κ2N-copper(II)] tetrahydrate, C22H23N3O9Cu
  30. The crystal structure of ethyl 4-hydroxy-2-(4-methoxyphenyl)-5-oxo-1-(2-oxo-2H-chromen-6-yl)-2,5-dihydro-1H-pyrrole-3-carboxylate, C23H19NO7
  31. Crystal structure of 7-hydroxy-3,4-dihydronaphthalen-1(2H)-one, C10H10O2
  32. Crystal structure of bis(tetrapropylammonium) dodecacarbonyltetratelluridotetraferrate(2-), (Pr4N)2[Fe4Te4(CO)12]
  33. The crystal structure of poly[bis(μ2−3−aminopyridine−4−carboxylatoκ2N:O)Zinc(II)], [Zn(C6H5N2O2)2] n
  34. The crystal structure of methyl 5-nitro-2-(tosyloxy)benzoate, C15H13NO7S
  35. The crystal structure of 18-crown-6 ― tetraaqua-dichlorido-di-μ2-chloridodicopper(II) (2/1), C12H32O10Cu2Cl4
  36. Crystal structure of 6,6a,7,8,9,10-hexahydro-5H-pyrazino [2,3-e]pyrido[1,2-a]pyrazine, C10H14N4
  37. Crystal structure of catena-poly-{diaqua-bis[μ-(((4-chlorophenyl)sulfonyl)glycinato-κO)](μ2-4, 4′-bipyridine-κ2N:N′)cobalt(II)} dihydrate, C26H30Cl2CoN4O12S2
  38. Crystal structure of bis{N′-[1,3-diphenylprop-2-en-1-ylidene]-N-phenylcarbamohydrazonothioato}zinc(II), C44H36N6S2Zn
  39. Crystal structure of tetraaqua-bis(((4-chlorophenyl)sulfonyl)glycinato-κO)cobalt(II) dihydrate, C16H26Cl2CoN2O14S2
  40. Crystal structure of 2-(5-phenyl-1-(quinolin-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)phenol, C24H19N3O
  41. Crystal structure of 2-((2-fluoro-4-(trifluoromethyl)phenyl)(hydroxy)methyl)-7-methoxy-3,4-dihydronaphthalen-1((2H))-one, C19H16F4O3
  42. Crystal structure of 2-amino-4-(2-fluoro-3-(trifluoromethyl)phenyl)-9-methoxy-1,4,5,6-tetrahydrobenzo[h]quinazolin-3-ium chloride, C20H18ClF4N3O
  43. Crystal structure of (2-phenylimino methylquinoline-κ 2 N,N′)-bis(1–phenylpyrazole-κ 2 C,N)-iridium(III) hexafluorophosphate, C34H26F6IrN6P
  44. Crystal structure of (3-hydroxy-4-methoxyphenyl)(pyrrolidin-1-yl)methanone, C12H15NO3
  45. The crystal structure of bis(trimethylsulfoxonium) catena-poly[µ2-hexabromido-indium(III)sodium(I)] C6H18O2S2NaInBr6
  46. Crystal structure of N-cyclopropyl-3-hydroxy-4-methoxybenzamide, C11H13NO3
  47. The crystal structure of (bis(benzimidazol-2-yl-methyl)amine-κ3N,N,N )-(dihydrogen L-malate-κ2O,O )copper(II) perchlorate dihydrate, CuC20H24ClN5O12
  48. Crystal structure of (1E,1′E)-4,4′-(9,9-diethyl-9H-fluorene-2,7-diyl)dibenzaldehyde dioxime, C31H28N2O2
  49. Crystal structure of diethyl 1,9-bis(4-fluorophenyl)-4,6-diphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta [b]pyridine-3,7(2H)-dicarboxylate, C40H36F2N2O4
  50. Crystal structure of bis(benzene-1 carboxylato-O 3,5-carboxyl-κ1O)-[(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)nickel(II) ─ benzene-1,3,5-tricarboxylic acid ─ water (1/2/4), C52H66N4NiO28
  51. Crystal structure of 1,4-dibromo-2,5-bis(2-methoxyethoxy)benzene-1,4-diol, C12H16Br2O4
  52. Crystal structure of dicarbonyl[N,N′-(1,2-dimethyl-1,2-ethanediylidene)bis[2,6-bis(1-methylethyl)benzenamine]-N,N′]nickel(0), C30H40N2NiO2
  53. Crystal structure of 1,4-dibromo-2,5-bis(prop-2-yn-1-yloxy)benzene, C12H8Br2O2
  54. Crystal structure of O-(3-(benzo[d]thiazol-2-yl)naphthalen-2-yl) O-phenyl carbonothioate, C24H15NO2S2
  55. The crystal structure of (E)-4-fluoro-N′-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H15FN2O2
  56. Crystal structure of (E)-1-(benzo[d]thiazol-2-yl)-N-(4,5-dihydropyren-2-yl)methanimine, C24H16N2S
  57. Crystal structure of 3-((4-bromophenyl)thio)-1H-indole, C14H10BrNS
  58. Synthesis and crystal structure of 1-((7-hydroxy-3-(4-hydroxy-3-nitrophenyl)-4-oxo-4H-chromen-8-yl)methyl)piperidin-1-ium-4-carboxylate monohydrate, C22H22N2O9
  59. Synthesis and crystal structure of (3E,5S,10S,13S,14S,17Z)-17-ethylidene-10,13-dimethylhexadecahydro-3H-cyclopenta[α]phenanthren-3-one O-(methacryloyl) oxime, C50H74N2O4
  60. Crystal structure of the hydrogen storage active phase La12Mg46LiMn
  61. The crystal structure of the salt: 4-((1,3-dioxoisoindolin-2-yl)carbamoyl)pyridine-1-ium 2-carboxybenzoate, C14H10N3O3·C8H5O4
  62. Crystal structure of (2-(2-pyridine)-benzimidazole-κ2 N,N′)-bis(1-phenylpyrazole-κ2 C,N)iridium(III) hexafluorophosphate, C30H22F6IrN7P
  63. Crystal structure of dichlorido-bis[2-(2,4-difluorophenyl)pyridine-κ1N]platinum(II), C22H14Cl2F4N2Pt
  64. Crystal structure of (5R,8R,9R,10R,12R,13R,14R, 17S,17Z)-2-((3-fluoropyridin-4-yl)methylene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3-one, C36H52FNO3
Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0375/html
Button zum nach oben scrollen