Home Crystal structure of the hydrogen storage active phase La12Mg46LiMn
Article Open Access

Crystal structure of the hydrogen storage active phase La12Mg46LiMn

  • Nazar Pavlyuk , Vitalii Nytka , Vasyl Kordan ORCID logo EMAIL logo and Volodymyr Pavlyuk
Published/Copyright: November 1, 2023

Abstract

La12Mg46LiMn, cubic, F m 3 m (no 225), a = 14.7119(3) Å, V = 3184.24(19) Å3, Z = 2, R gt (F) = 0.0330, wR ref (F 2) = 0.0601, T = 293(2) K.

CCDC no.: 2294835

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Figure 1: 
Atomic structure of a four-shell cluster [Mn/LiMg8@Mg12La6@Mg24@Mg24La24]. Packing of [H1Mg4LaMn/Li] octahedra (violet) and [H2La3Mg] (green), [H3Mg3La] (grey) tetrahedrons.
Figure 1:

Atomic structure of a four-shell cluster [Mn/LiMg8@Mg12La6@Mg24@Mg24La24]. Packing of [H1Mg4LaMn/Li] octahedra (violet) and [H2La3Mg] (green), [H3Mg3La] (grey) tetrahedrons.

Table 1:

Data collection and handling.

Crystal: Grey prism
Size: 0.06 × 0.05 × 0.03 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 8.51 mm−1
Diffractometer, scan mode: Oxford diffraction Xcalibur3, ω
θ max, completeness: 26.3°, >99 %
N(hkl)measured, N(hkl)unique, R int: 5052, 205, 0.079
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 180
N(param)refined: 17
Programs: SHELX [1, 2], publCIF [3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
La1 0.20542 (9) 0.0000 0.0000 0.0159 (3)
Mg1 0.0000 0.2500 0.2500 0.0164 (14)
Mg2 0.3781 (3) 0.3781 (3) 0.3781 (3) 0.0210 (13)
Mg3 0.1703 (2) 0.1703 (2) 0.1703 (2) 0.0179 (13)
Mg4 0.0000 0.0000 0.0000 0.009 (3)
Mn1a 0.5000 0.5000 0.5000 0.042 (5)*
Li1b 0.5000 0.5000 0.5000 0.042 (5)*
  1. aOccupancy: 0.4996, bOccupancy: 0.5002.

1 Source of material

The La12Mg46LiMn sample was prepared in Ta-crucibles which were placed in a resistance furnace with a thermocouple controller. The heating rate from room temperature to 670 K was equal to 5 K per minute. The purity of constituent elements was more than 99.98 wt%. At this temperature, the alloy was kept for over 2 days and then the temperature was increased from 670 K to 1170 K for over 4 h. Then, the alloy was annealed at this temperature for 12 h and slowly cooled to room temperature. After the mechanical defragmentation of the alloy, the small prismatic single crystals were isolated for X-ray investigations. The density of the alloy was determined using the volumetric method. For the ternary phase of La12Mg46LiMn, the measured density is 2.98(2) g/cm3, which is less than 2 % different from the density calculated from X-ray data.

2 Experimental details

The crystal structure of the La12Mg46LiMn was studied by single crystal X-ray diffraction. Absorption correction was performed by analytical method. The solution of the crystal structure was carried out by Direct Methods. In the first stage of the structure solution, the positions of La and Mg atoms were obtained correctly by Direct Methods. The statistical mixture of Li and Mn atoms occupies one site 4b. The refinement of the structure model with a statistical mixture of Li and Mn atoms leads to a significant reduction in the value of the conventional R index. Crystal data and details of the structure refinement for La12Mg46LiMn are given in Table 1.

3 Comment

Previous studies have shown that magnesium is capable to forming ternary intermetallic compounds and solid solutions at the interaction with rare-earth elements and 3-d metals [5], [6], [7], [8], as well as p-elements [9], [10], [11], [12], [13]. Some of these ternary phases exhibit hydrogen sorption activity.

La12Mg46LiMn compound crystallizes in the cubic Zr6Zn23Si structure type [14] which is as “filled” variant of Th6Mn23-type [15] structure. The quaternary intermetallic compound La12Mg46LiMn can be described as four-shell clusters of cluster [Mn/LiMg8@Mg12La6@Mg24@Mg24La24] (see Figure 1). The [Mn/LiMg8] cube is encapsulated in the tetrakis cubooctahedron [Mg12La6] cluster and both together are encapsulated in a truncated rhombic dodecahedron [Mg24]. The fourth core–shell is a tetracontaoctagon [Mg24La24] cluster. Our study of hydrogen sorption properties shows a hydrogen sorption capacity of up to 1.8 wt% H2, which corresponds to the formula of the hydride La12Mg46LiMnH52. The theoretical basics of the analysis of voids in crystal structures by means of a crystallo-chemical approach give three types of voids between the shells of clusters, namely octahedral (site 24e: x = 0.368, y = 1/2, z = 1/2) and two tetrahedral (32f: x = 0.092, y = 0.092, z = 0.092 and 96j: x = 0.373, y = 1/2, z = 0.300). The void in site 96j can be occupied by half because of hydrogen atoms in the split position. The mutual stacking of hydrogen-filled octahedra and tetrahedra is shown in Figure 1 For the hydrogenated phase the unit cell dimension increases up to a = 14.793 Å.


Corresponding author: Vasyl Kordan, Department of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla, and Mefodiya Str., 6, 79005, Lviv, Ukraine, E-mail:

Funding source: National Research Foundation of Ukraine

Award Identifier / Grant number: (2022.01/0064)

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: National Research Foundation of Ukraine (2022.01/0064).

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

3. Westrip, S. P. publCIF: software for editing, validating and formatting crystallographic information files. J. Appl. Crystallogr. 2010, 43, 920–925. https://doi.org/10.1107/S0021889810022120.Search in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Ver. 1f. Crystal Impact: Bonn, Germany, 2008.Search in Google Scholar

5. Shtender, V. V., Denys, R. V., Zavaliy, I. Y., Zelinska, O. Y., Paul-Boncour, V., Pavlyuk, V. V. J. Phase equilibria in the Tb–Mg–Co system at 500 C, crystal structure and hydrogenation properties of selected compounds. Solid State Chem. 2015, 232, 228–235. https://doi.org/10.1016/j.jssc.2015.09.031.Search in Google Scholar

6. Pavlyuk, V., Marciniak, B., Różycka-Sokołowska, E. The isothermal section of the phase diagram of Ce–Mg–Zn ternary system at 470 K. Intermetallics 2012, 20, 8–15. https://doi.org/10.1016/j.intermet.2011.08.013.Search in Google Scholar

7. Pavlyuk, V., Solokha, P., Dmytriv, G., Marciniak, B., Paul-Boncour, V. The Heusler-type alloy MgZn2Ce. Acta Crystallogr. 2007, C63, i161. https://doi.org/10.1107/S1600536807028899.Search in Google Scholar

8. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A. Anti-Mackay polyicosahedral clusters in La–Ni–Mg ternary compounds: synthesis and crystal structure of the La43Ni17Mg5 new intermetallic phase. Inorg. Chem. 2009, 48, 11586–11593. https://doi.org/10.1021/ic901422v.Search in Google Scholar PubMed

9. Pavlyuk, V., Ciesielski, W., Pavlyuk, N., Kulawik, D., Szyrej, M., Rozdzynska-Kielbik, B., Kordan, V. Electrochemical hydrogenation of Mg76Li12Al12 solid solution phase. Ionics 2019, 25, 2701–2709. https://doi.org/10.1007/s11581-018-2743-8.Search in Google Scholar

10. Pavlyuk, V., Ciesielski, W., Pavlyuk, N., Kulawik, D., Kowalczyk, G., Balińska, A., Szyrej, M., Rozdzynska-Kielbik, B., Folentarska, A., Kordan, V. Hydrogenation and structural properties of Mg100−2xLixAlx (x = 12) limited solid solution. Mater. Chem. Phys. 2019, 223, 503–511. https://doi.org/10.1016/j.matchemphys.2018.11.007.Search in Google Scholar

11. De Negri, S., Solokha, P., Minetti, R., Skrobańska, M., Saccone, A. Isothermal section of the La–Mg–Sn system at 500 °C and crystal structure of the new ternary stannide LaMgSn2. J. Solid State Chem. 2017, 248, 32–39. https://doi.org/10.1016/j.jssc.2017.01.016.Search in Google Scholar

12. Kordan, V., Nytka, V., Tarasiuk, I., Zelinska, O., Pavlyuk, V. Synthesis, crystal structure, and electrochemical hydrogenation of the La2Mg17−xMx (M = Ni, Sn, Sb) solid solutions. Eur. J. Chem. 2021, 12, 197–203. https://doi.org/10.5155/eurjchem.12.2.197–203.2092.10.5155/eurjchem.12.2.197-203.2092Search in Google Scholar

13. Nytka, V., Kordan, V., Pavlyuk, V. La3.65Mg30Sb1.07 as a disordered derivative of Th2Ni17-type structure. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 1147–1149. https://doi.org/10.1515/ncrs-2022–0411.10.1515/ncrs-2022-0411Search in Google Scholar

14. Chen, X. A., Jeitschko, W., Gerdes, M. H. Synthesis, properties and crystal structure of Zr6Zn23Si with “filled” Th6Mn23 type structure. J. Alloys Compd. 1996, 234, 12–18. https://doi.org/10.1016/0925–8388(95)01967–7.10.1016/0925-8388(95)01967-7Search in Google Scholar

15. Florio, J. V., Rundle, R. E., Snow, A. I. Compounds of thorium with transition metals. I. The thorium-manganese system. Acta Crystallogr. 1952, 5, 449–457.10.1107/S0365110X52001337Search in Google Scholar

Received: 2023-09-19
Accepted: 2023-10-13
Published Online: 2023-11-01
Published in Print: 2023-12-15

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of bis(dimethylammonium) poly[(μ4-1,1′-(1,4-phenylenebis(methylene))bis(1H-pyrazole-3,5-dicarboxylato))-κ6O1, N2:O2:O3:O1′,N2′]nickel (II)], C22H26N6NiO8
  4. Hydrothermal synthesis and crystal structure of catena-poly[diaqua-bis(μ2-4-((pyridin-4-ylmethyl)amino)benzoato-κ2N:O)cobalt(II)] 4,4′-bipyridine – water (1/2/2)
  5. Crystal structure of (2S,3S,4S,5S, Z)-2,3,5,6-tetrakis(benzyloxy)-4-hydroxyhexanal oxime, C34H37NO6
  6. The crystal structure of hexakis(3-thiophenecarboxylato-κ2O,O″)-bis(1,10-phenanthroline-κ2N,N′) trimanganese(II), C54H34N4O12S6Mn3
  7. Crystal structure of catena-poly[(μ2-1,4-di(pyridin-4-yl)benzene-κ2N:N′)-(4-bromobenzoate-κ2O:O′)-(μ-2-bromobenzoate-κ2O,O′)nickel(II)] – water (2/1), C30H21Br2N2NiO4.5
  8. The crystal structure of poly[(μ3-1,3-phenylenedioxydiacetate-κ5O,O,O′,O″,O‴)-bis(4′-(4-(1H-imidazol-1-yl)phenyl)-4,2′:6′,4″-terpyridine-kN) cadmium(II)], C58H42CdN10O6
  9. The crystal structure of 5-chloro-6′-methyl-3-(4-(methylsulfonyl)phenyl)-[2,3′-bipyridin]-1′-ium 4-methylbenzenesulfonate
  10. Crystal structure of poly[(μ-benzoato)-(μ-cis-4–hydroxy-D-proline)lithium], C12H14LiNO5
  11. The crystal structure of catena-poly[aqua-(4-iodopyridine-2,6-dicarboxylato-κ3N,O,O)-copper(II)] monohydrate, C7H6NO6ICu
  12. The crystal structure of catena-[diaqua-(4-acetylphenoxyacetato-κ2O,O)-bis(4-acetylphenoxyacetato-κ3O,O:O)-dihydrate-lanthanum(III)]–4,4′-bipyridine (2/1), C35H35NO14La
  13. The crystal structure of catena-poly[(4-iodopyridine-2,6-dicarboxylato-κ4 O,N,O′,O′′)(4-imidazol-1-yl-pyridine-κN)copper(II)], C15H9N4O4ICu
  14. Crystal structure of polybis(μ 4-3,5-dicarboxylatopyrazol-1-yl)-bis(N,N-dimethylformamide)tri-copper(II)–acetonitrile (1/2), C20H22Cu3N8O10
  15. Crystal structure of poly[(μ2-5-hydroxy-isophthalato-κ4O,O′:O″,O‴)-(μ2-1,5-bis(imidazol-2-methyl)pentane-κ2N:N′)cadmium(II)], C21H24CdN4O5
  16. The crystal structure of poly[bis(μ2-1,4-bi(1-imidazolyl)benzene-κ2N:N′)bis(μ2-4,4′-methylenebis(3-hydroxy-2-naphthoate)-κ2O:O′)cobalt(II)], C35H24CoN4O6
  17. The crystal structure of a cobalt-vanadium-oxido hydrate
  18. The crystal structure of catena-poly[(μ 2-2H-1,2,3-triazole-4,5-dicarboxylato-κ 2 O, O′)-(μ 2-1,3-bis((1H-imidazol-1-yl)methyl)benzene-κ 2 N,N′) zinc(II)], C18H15N7O4Zn
  19. Crystal structure of poly[diaqua-(bis(m2-1,4-bis(imidazol-1-ylmethyl)benzene)-κ2N,N′-manganese] dichloride, C28H32MnN8O2Cl2
  20. The crystal structure of 9,10-dimethoxy-5,6-dihydro-[1,3]dioxolo[4,5-g]isoquinolino [3,2-a]isoquinolin-7-ium (E)-3-(4-nitrophenyl)acrylate pentahydrate, C29H34N2O13
  21. Crystal structure of poly[(μ6-ammoniotris(methylene))tris(hydrogen phosphonato)cadmium(II)], C3H10CdNO9P3
  22. Crystal structure of Zn2[(1,1′-(hexane-1,6-diyl)bis(3-(pyridin-3-yl)urea))·(H2O)2·(DMF)2·(SO4)2], C24H50N8O18S2Zn2
  23. The crystal structure of 2-anilino-1,4-naphthoquinone, C10H11NO2
  24. Crystal structure of (E)-2-(2-(4-(diethylamino)styryl)-1-ethyl-1,4-dihydroquinolin-4-yl) malononitrile, C26H26N4
  25. Crystal structure of ethyl 2-((2,6-dichloro-4-(cyanomethyl)phenyl) amino)benzoate, C17H14Cl2N2O2
  26. Synthesis and crystal structure of 2-(3-oxo-3-phenylpropyl)isoindoline-1,3-dione, C17H13NO3
  27. The crystal structure of bis(acetonitrile-κ1N)tetrakis(μ2-2,6-difluorobenzoato-κ2O:O′)rhodium(II) (Rh–Rh), C32H18F8O8N2Rh2
  28. The crystal structure of a new polymorph of 6-hydroxy-2-naphthoic acid, C11H8O3
  29. The crystal structure of [(8-carboxymethoxy-quinoline-2-carboxylate-κ4N,O,O,O)-2,2′-bipyridine-κ2N-copper(II)] tetrahydrate, C22H23N3O9Cu
  30. The crystal structure of ethyl 4-hydroxy-2-(4-methoxyphenyl)-5-oxo-1-(2-oxo-2H-chromen-6-yl)-2,5-dihydro-1H-pyrrole-3-carboxylate, C23H19NO7
  31. Crystal structure of 7-hydroxy-3,4-dihydronaphthalen-1(2H)-one, C10H10O2
  32. Crystal structure of bis(tetrapropylammonium) dodecacarbonyltetratelluridotetraferrate(2-), (Pr4N)2[Fe4Te4(CO)12]
  33. The crystal structure of poly[bis(μ2−3−aminopyridine−4−carboxylatoκ2N:O)Zinc(II)], [Zn(C6H5N2O2)2] n
  34. The crystal structure of methyl 5-nitro-2-(tosyloxy)benzoate, C15H13NO7S
  35. The crystal structure of 18-crown-6 ― tetraaqua-dichlorido-di-μ2-chloridodicopper(II) (2/1), C12H32O10Cu2Cl4
  36. Crystal structure of 6,6a,7,8,9,10-hexahydro-5H-pyrazino [2,3-e]pyrido[1,2-a]pyrazine, C10H14N4
  37. Crystal structure of catena-poly-{diaqua-bis[μ-(((4-chlorophenyl)sulfonyl)glycinato-κO)](μ2-4, 4′-bipyridine-κ2N:N′)cobalt(II)} dihydrate, C26H30Cl2CoN4O12S2
  38. Crystal structure of bis{N′-[1,3-diphenylprop-2-en-1-ylidene]-N-phenylcarbamohydrazonothioato}zinc(II), C44H36N6S2Zn
  39. Crystal structure of tetraaqua-bis(((4-chlorophenyl)sulfonyl)glycinato-κO)cobalt(II) dihydrate, C16H26Cl2CoN2O14S2
  40. Crystal structure of 2-(5-phenyl-1-(quinolin-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)phenol, C24H19N3O
  41. Crystal structure of 2-((2-fluoro-4-(trifluoromethyl)phenyl)(hydroxy)methyl)-7-methoxy-3,4-dihydronaphthalen-1((2H))-one, C19H16F4O3
  42. Crystal structure of 2-amino-4-(2-fluoro-3-(trifluoromethyl)phenyl)-9-methoxy-1,4,5,6-tetrahydrobenzo[h]quinazolin-3-ium chloride, C20H18ClF4N3O
  43. Crystal structure of (2-phenylimino methylquinoline-κ 2 N,N′)-bis(1–phenylpyrazole-κ 2 C,N)-iridium(III) hexafluorophosphate, C34H26F6IrN6P
  44. Crystal structure of (3-hydroxy-4-methoxyphenyl)(pyrrolidin-1-yl)methanone, C12H15NO3
  45. The crystal structure of bis(trimethylsulfoxonium) catena-poly[µ2-hexabromido-indium(III)sodium(I)] C6H18O2S2NaInBr6
  46. Crystal structure of N-cyclopropyl-3-hydroxy-4-methoxybenzamide, C11H13NO3
  47. The crystal structure of (bis(benzimidazol-2-yl-methyl)amine-κ3N,N,N )-(dihydrogen L-malate-κ2O,O )copper(II) perchlorate dihydrate, CuC20H24ClN5O12
  48. Crystal structure of (1E,1′E)-4,4′-(9,9-diethyl-9H-fluorene-2,7-diyl)dibenzaldehyde dioxime, C31H28N2O2
  49. Crystal structure of diethyl 1,9-bis(4-fluorophenyl)-4,6-diphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta [b]pyridine-3,7(2H)-dicarboxylate, C40H36F2N2O4
  50. Crystal structure of bis(benzene-1 carboxylato-O 3,5-carboxyl-κ1O)-[(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)nickel(II) ─ benzene-1,3,5-tricarboxylic acid ─ water (1/2/4), C52H66N4NiO28
  51. Crystal structure of 1,4-dibromo-2,5-bis(2-methoxyethoxy)benzene-1,4-diol, C12H16Br2O4
  52. Crystal structure of dicarbonyl[N,N′-(1,2-dimethyl-1,2-ethanediylidene)bis[2,6-bis(1-methylethyl)benzenamine]-N,N′]nickel(0), C30H40N2NiO2
  53. Crystal structure of 1,4-dibromo-2,5-bis(prop-2-yn-1-yloxy)benzene, C12H8Br2O2
  54. Crystal structure of O-(3-(benzo[d]thiazol-2-yl)naphthalen-2-yl) O-phenyl carbonothioate, C24H15NO2S2
  55. The crystal structure of (E)-4-fluoro-N′-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H15FN2O2
  56. Crystal structure of (E)-1-(benzo[d]thiazol-2-yl)-N-(4,5-dihydropyren-2-yl)methanimine, C24H16N2S
  57. Crystal structure of 3-((4-bromophenyl)thio)-1H-indole, C14H10BrNS
  58. Synthesis and crystal structure of 1-((7-hydroxy-3-(4-hydroxy-3-nitrophenyl)-4-oxo-4H-chromen-8-yl)methyl)piperidin-1-ium-4-carboxylate monohydrate, C22H22N2O9
  59. Synthesis and crystal structure of (3E,5S,10S,13S,14S,17Z)-17-ethylidene-10,13-dimethylhexadecahydro-3H-cyclopenta[α]phenanthren-3-one O-(methacryloyl) oxime, C50H74N2O4
  60. Crystal structure of the hydrogen storage active phase La12Mg46LiMn
  61. The crystal structure of the salt: 4-((1,3-dioxoisoindolin-2-yl)carbamoyl)pyridine-1-ium 2-carboxybenzoate, C14H10N3O3·C8H5O4
  62. Crystal structure of (2-(2-pyridine)-benzimidazole-κ2 N,N′)-bis(1-phenylpyrazole-κ2 C,N)iridium(III) hexafluorophosphate, C30H22F6IrN7P
  63. Crystal structure of dichlorido-bis[2-(2,4-difluorophenyl)pyridine-κ1N]platinum(II), C22H14Cl2F4N2Pt
  64. Crystal structure of (5R,8R,9R,10R,12R,13R,14R, 17S,17Z)-2-((3-fluoropyridin-4-yl)methylene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3-one, C36H52FNO3
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0416/html
Scroll to top button