Startseite The crystal structure of bis(acetonitrile-κ1N)tetrakis(μ2-2,6-difluorobenzoato-κ2O:O′)rhodium(II) (Rh–Rh), C32H18F8O8N2Rh2
Artikel Open Access

The crystal structure of bis(acetonitrile-κ1N)tetrakis(μ2-2,6-difluorobenzoato-κ2O:O′)rhodium(II) (Rh–Rh), C32H18F8O8N2Rh2

  • Zihao Zhong und Miao Meng ORCID logo EMAIL logo
Veröffentlicht/Copyright: 15. September 2023

Abstract

C32H18F8O8N2Rh2, monoclinic, P21/n (no. 11), a = 9.28200(12) Å, b = 11.33638(13) Å, c = 16.0352(2) Å, β = 105.9326(14)° V = 1622.47 Å3, Z = 4, R gt (F) = 0.0297, wR ref (F2) = 0.0763, T = 150 K.

CCDC no.: 2290544

The crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Blue-green plate
Size: 0.10 × 0.05 × 0.02  mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 9.152  mm−1
Diffractometer, scan mode: Rigaku, XtaLAB, φ and ω scans
θmax, completeness: 74.12°, 100 %
N(hkl)measured, N(hkl)uniqueRint: 8299, 3177, 0.0268
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs),
N(param)refined: 236
Programs: CrysAlisPRO [1], SHELX [2], Olex2 [3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.5426 (4) 1.0594 (3) −0.1484 (2) 0.0270 (6)
C2 0.5700 (3) 1.0964 (3) −0.2324 (2) 0.0285 (6)
C3 0.5086 (4) 1.1980 (3) −0.2761 (2) 0.0323 (7)
C4 0.5446 (4) 1.2416 (3) −0.3480 (2) 0.0380 (8)
H4 0.4995 (4) 1.3097 (3) −0.3756 (2) 0.0456 (9)*
C5 0.6494 (5) 1.1812 (4) −0.3778 (2) 0.0450 (9)
H5 0.6783 (5) 1.2104 (4) −0.4250 (2) 0.0540 (11)*
C6 0.7121 (5) 1.0779 (4) −0.3384 (2) 0.0454 (9)
H6 0.7807 (5) 1.0362 (4) −0.3597 (2) 0.0544 (11)*
C7 0.6715 (4) 1.0380 (3) −0.2677 (2) 0.0364 (8)
C8 0.4234 (3) 0.7888 (3) −0.0579 (2) 0.0271 (6)
C9 0.3789 (3) 0.6659 (3) −0.0883 (2) 0.0286 (6)
C10 0.3850 (4) 0.6244 (3) −0.1686 (2) 0.0311 (7)
C11 0.3441 (4) 0.5122 (3) −0.1975 (2) 0.0374 (8)
H11 0.3484 (4) 0.4876 (3) −0.2521 (2) 0.0449 (9)*
C12 0.2962 (4) 0.4367 (3) −0.1426 (3) 0.0435 (9)
H12 0.2693 (4) 0.3597 (3) −0.1604 (3) 0.0522 (10)*
C13 0.2875 (5) 0.4731 (3) −0.0625 (3) 0.0469 (10)
H13 0.2542 (5) 0.4222 (3) −0.0263 (3) 0.0563 (12)*
C14 0.3293 (4) 0.5869 (3) −0.0371 (2) 0.0396 (8)
C15 0.9636 (4) 0.8445 (3) 0.0894 (2) 0.0344 (7)
C16 1.0944 (4) 0.7667 (4) 0.1125 (3) 0.0596 (12)
H16a 1.1723 (14) 0.7989 (16) 0.0905 (19) 0.0895 (19)*
H16b 1.130 (2) 0.760 (2) 0.1745 (4) 0.0895 (19)*
H16c 1.067 (1) 0.6901 (9) 0.0877 (19) 0.0895 (19)*
F1 0.7334 (3) 0.9364 (2) −0.2306 (2) 0.0552 (6)
F2 0.4330 (3) 0.7010 (2) −0.2201 (1) 0.0465 (5)
F3 0.3250 (3) 0.6247 (2) 0.0424 (2) 0.0590 (7)
F4 0.4113 (3) 1.2603 (2) −0.2452 (1) 0.0463 (5)
N1 0.8620 (3) 0.9017 (3) 0.0702 (2) 0.0320 (6)
O1 0.5605 (2) 0.8055 (2) −0.0232 (1) 0.0283 (5)
O2 0.6541 (2) 1.0186 (2) −0.0920 (1) 0.0299 (5)
O3 0.6816 (2) 1.1369 (2) 0.0692 (2) 0.0309 (5)
O4 0.5876 (2) 0.9259 (2) 0.1402 (1) 0.0301 (5)
Rh1 0.6283 (1) 0.9692 (1) 0.0251 (1) 0.02365 (9)

1 Source of material

Rhodium(II) acetate was prepared by a method described in the literature [5]. Rh2(2,6–2F–C6H3COO)4⋅2CH3CN was prepared by a ligand-exchange reaction of rhodium(II) acetate with 2,6-difluorobenzoic acid. A solution of rhodium(II) acetate (0.100 g, 0.226 mmol), 2,6-difluoronitrobenzoic acid (3.214 g, 0.0164 mol) in 5 mL of diethyleneglycoldimethylether was stirred for 6 h at 190 °C. After evaporation of the solvent, recrystallization from acetonitrile gave blue-green plate crystals, yield 68.5 %.

2 Experimental details

Coordinates of hydrogen atoms were not refined. Their Uiso values were set to 1.2 Ueq of the parent atoms.

3 Comment

Dirhodium tetracarboxylates have significant potential for catalysis, molecular devices as well as pharmaceutical chemistry [6], [7], [8]. This type of paddlewheel complexes such as cis-[Rh2(xhp)2(CH3CN) n ][BF4]2 (n = 5 or 6) and [Rh2(guaiazulene carboxylate)4(H2O)2] may have fluorescent properties [9], [10], [11].

In the crystal structure of the title molecule, two rhodium(II) ions are bridged by four 2,6-difluorobenzoato ligands to form a paddle-wheel dimer. The Rh1–Rh1a distance is 2.399(1) Å, which is slightly shorter than that of adduct complexes of rhodium(II) benzoate (2.405(1) Å, for [Rh2(O2CC6H5)4(DMSO)2]⋅C6H5CH3 [9], 2.402(1) Å, for [Rh2(O2CC6H5)4(py)2] [10]. But this bond length is still in the range for tetracarboxylato dirhodium(II) dimers (2.35–2.45 Å,) [12]. Thus two rhodium(II) ions reported here are assigned to be singly bonded.

The coordination geometries around the rhodium(II) ions are square-bipyramidal, which has been well established before [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]. The axial positions of the dimer core are occupied by nitrogen atoms of the acetonitrile molecules with Rh–N distances of 2.225 Å, which is slightly shorter than those reported in the literature (c.a. 0.012 Å and 0.008 Å) [613]. The tightly binding of axial base reported here may be due to the two fluorine atom 2,6-difluoronitrobenzoic cation, which make the electron density of [Rh2] unit lower than similar compounds [6, 13] and enhance its Lewis acidity at axial position.


Corresponding author: Miao Meng, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P.R. China, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire contentof this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: We acknowledge primary financial support from the Natural Science Foundation of Guangdong Province (No. 2018A030313894); Experimental Teaching Reform Project of Jinan University (SYJG202319).

  5. Data availability: Not applicable.

References

1. Rigaku, O. D. CrysAlisPRO Software System. version 1.171.39.28b; Rigaku Oxford Diffraction: Japan, 2015.Suche in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallgr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Ver. 4.0; Crystal Impact: Bonn, Germany, 2015.Suche in Google Scholar

5. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K., Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment–olex2 dissected. Acta Crystallogr. 2015, A71, 59–75.10.1107/S2053273314022207Suche in Google Scholar PubMed PubMed Central

6. Legzdins, P., Mitchell, R. W., Rempel, G. L., Ruddick, J. D., Wilkinson, G. The protonation of ruthenium-and rhodium-bridged carboxylates and their use as homogeneous hydrogenation catalysts for unsaturated substances. J. Chem. Soc. A 1970, 3322–3326; https://doi.org/10.1039/j19700003322.Suche in Google Scholar

7. Cotton, F. A., Hillard, E. A., Liu, C. Y., Murillo, C. A., Wang, W., Wang, X. Steps on the way to the first dirhodium tetracarboxylate with no axial ligation: synthetic lessons and a plethora of Rh2(O2CR)4L2−n compounds, n=0, 1, 2. Inorg. Chim. Acta 2002, 337, 233–246; https://doi.org/10.1016/s0020-1693(02)01088-5.Suche in Google Scholar

8. Whittemore, T. J., Xue, C., Huang, J., Gallucci, J. C., Turro, C. Single-chromophore single-molecule photocatalyst for the production of dihydrogen using low-energy light. Nat. Chem. 2020, 12, 180–185; https://doi.org/10.1038/s41557-019-0397-4.Suche in Google Scholar PubMed

9. Li, Z., David, A., Albani, B. A., Pellois, J. P., Turro, C., Dunbar, K. R. Optimizing the electronic properties of photoactive anticancer oxypyridine-bridged dirhodium (II, II) complexes. J. Am. Chem. Soc. 2014, 136, 17058–17070; https://doi.org/10.1021/ja5078359.Suche in Google Scholar PubMed

10. Cooke, M. W., Hanan, G. S., Loiseau, F., Campagna, S., Watanabe, M., Tanaka, Y. The structural and functional roles of rhodium(II)-rhodium(II) dimers in multinuclear ruthenium(II) complexes. Angew. Chem. 2005, 117, 4959–4962; https://doi.org/10.1002/ange.200500392.Suche in Google Scholar

11. Cooke, M. W., Hanan, G. S., Loiseau, F., Campagna, S., Watanabe, M., Tanaka, Y. Self-assembled light-harvesting systems: Ru(II) complexes assembled about Rh–Rh cores. J. Am. Chem. Soc. 2007, 129, 10479–10488; https://doi.org/10.1021/ja072153t.Suche in Google Scholar PubMed

12. Tsuchiya, T., Umemura, R., Kaminaga, M., Kushida, S., Ohkubo, K., Noro, K.-I., Mazak, Y. Paddlewheel complexes with azulenes: electronic interaction between metal centers and equatorial ligands. ChemPlusChem 2019, 84, 655–664; https://doi.org/10.1002/cplu.201800513.Suche in Google Scholar PubMed

13. Mehmet, N., Tocher, D. A. Crystal and molecular structures of three [Rh2(O(E)CR)4(C5H5N)2] compounds (E=S, R=CMe3, Ph; E=O, R=Ph). Inorg. Chim. Acta 1991, 188, 71–74; https://doi.org/10.1016/s0020-1693(00)80920-2.Suche in Google Scholar

14. Takamizawa, S., Hiroki, T., Nakata, E., Mochizuki, K., Mori, W. Crystal structure and gas adsorption property of rhodium(II) benzoate pyrazine. Chem. Lett. 2002, 31, 1208–1209; https://doi.org/10.1246/cl.2002.1208.Suche in Google Scholar

15. Das, K., Kadish, K. M., Bear, J. L. Substituent and solvent effects on the electrochemical properties of tetra-μ-carboxylato-dirhodium (II). Inorg. Chem. 1978, 17, 930–934; https://doi.org/10.1021/ic50182a027.Suche in Google Scholar

16. Mikuriya, M., Yamamoto, J., Ouchi, K., Yoshioka, D., Handa, M. Preparation and crystal structure of a chain complex of dinuclear rhodium(II) benzoate and pyrimidine with diacetonitrile adduct of dinuclear rhodium(II) benzoate. X-ray Struct. Anal. Online 2011, 27, 69–70; https://doi.org/10.2116/xraystruct.27.69.Suche in Google Scholar

17. Cotton, F. A., Thompson, J. L. Preparation and structural characterization of three tetracarboxylato dirhodium (Rh–Rh) compounds with bulky ligands. Inorg. Chim. Acta 1984, 81,193–203; https://doi.org/10.1016/s0020-1693(00)88758-7.Suche in Google Scholar

18. Markwell-Heys, A. W., Roemelt, M., Slattery, A. D., Linder-Patton, O. M., Bloch, W. M. Linking metal?organic cages pairwise as a design approach for assembling multivariate crystalline materials. Chem. Sci. 2022, 13, 68–73; https://doi.org/10.1039/d1sc05663h.Suche in Google Scholar

19. Rizzuto, F. J., Ramsay, W. J., Nitschke, J. R. Otherwise unstable structures self-assemble in the cavities of cuboctahedral coordination cages. J. Am. Chem. Soc. 2018, 140, 11502–11509; https://doi.org/10.1021/jacs.8b07494.Suche in Google Scholar

20. Cotton, F. A., Lin, C., Murillo, C. A. Neutral dodecanuclear supramolecular complexes containing dimetal units linked by the trimesate anion. Inorg. Chem. 2001, 40, 6413–6417; https://doi.org/10.1021/ic0104959.Suche in Google Scholar

Received: 2023-07-23
Accepted: 2023-08-24
Published Online: 2023-09-15
Published in Print: 2023-12-15

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of bis(dimethylammonium) poly[(μ4-1,1′-(1,4-phenylenebis(methylene))bis(1H-pyrazole-3,5-dicarboxylato))-κ6O1, N2:O2:O3:O1′,N2′]nickel (II)], C22H26N6NiO8
  4. Hydrothermal synthesis and crystal structure of catena-poly[diaqua-bis(μ2-4-((pyridin-4-ylmethyl)amino)benzoato-κ2N:O)cobalt(II)] 4,4′-bipyridine – water (1/2/2)
  5. Crystal structure of (2S,3S,4S,5S, Z)-2,3,5,6-tetrakis(benzyloxy)-4-hydroxyhexanal oxime, C34H37NO6
  6. The crystal structure of hexakis(3-thiophenecarboxylato-κ2O,O″)-bis(1,10-phenanthroline-κ2N,N′) trimanganese(II), C54H34N4O12S6Mn3
  7. Crystal structure of catena-poly[(μ2-1,4-di(pyridin-4-yl)benzene-κ2N:N′)-(4-bromobenzoate-κ2O:O′)-(μ-2-bromobenzoate-κ2O,O′)nickel(II)] – water (2/1), C30H21Br2N2NiO4.5
  8. The crystal structure of poly[(μ3-1,3-phenylenedioxydiacetate-κ5O,O,O′,O″,O‴)-bis(4′-(4-(1H-imidazol-1-yl)phenyl)-4,2′:6′,4″-terpyridine-kN) cadmium(II)], C58H42CdN10O6
  9. The crystal structure of 5-chloro-6′-methyl-3-(4-(methylsulfonyl)phenyl)-[2,3′-bipyridin]-1′-ium 4-methylbenzenesulfonate
  10. Crystal structure of poly[(μ-benzoato)-(μ-cis-4–hydroxy-D-proline)lithium], C12H14LiNO5
  11. The crystal structure of catena-poly[aqua-(4-iodopyridine-2,6-dicarboxylato-κ3N,O,O)-copper(II)] monohydrate, C7H6NO6ICu
  12. The crystal structure of catena-[diaqua-(4-acetylphenoxyacetato-κ2O,O)-bis(4-acetylphenoxyacetato-κ3O,O:O)-dihydrate-lanthanum(III)]–4,4′-bipyridine (2/1), C35H35NO14La
  13. The crystal structure of catena-poly[(4-iodopyridine-2,6-dicarboxylato-κ4 O,N,O′,O′′)(4-imidazol-1-yl-pyridine-κN)copper(II)], C15H9N4O4ICu
  14. Crystal structure of polybis(μ 4-3,5-dicarboxylatopyrazol-1-yl)-bis(N,N-dimethylformamide)tri-copper(II)–acetonitrile (1/2), C20H22Cu3N8O10
  15. Crystal structure of poly[(μ2-5-hydroxy-isophthalato-κ4O,O′:O″,O‴)-(μ2-1,5-bis(imidazol-2-methyl)pentane-κ2N:N′)cadmium(II)], C21H24CdN4O5
  16. The crystal structure of poly[bis(μ2-1,4-bi(1-imidazolyl)benzene-κ2N:N′)bis(μ2-4,4′-methylenebis(3-hydroxy-2-naphthoate)-κ2O:O′)cobalt(II)], C35H24CoN4O6
  17. The crystal structure of a cobalt-vanadium-oxido hydrate
  18. The crystal structure of catena-poly[(μ 2-2H-1,2,3-triazole-4,5-dicarboxylato-κ 2 O, O′)-(μ 2-1,3-bis((1H-imidazol-1-yl)methyl)benzene-κ 2 N,N′) zinc(II)], C18H15N7O4Zn
  19. Crystal structure of poly[diaqua-(bis(m2-1,4-bis(imidazol-1-ylmethyl)benzene)-κ2N,N′-manganese] dichloride, C28H32MnN8O2Cl2
  20. The crystal structure of 9,10-dimethoxy-5,6-dihydro-[1,3]dioxolo[4,5-g]isoquinolino [3,2-a]isoquinolin-7-ium (E)-3-(4-nitrophenyl)acrylate pentahydrate, C29H34N2O13
  21. Crystal structure of poly[(μ6-ammoniotris(methylene))tris(hydrogen phosphonato)cadmium(II)], C3H10CdNO9P3
  22. Crystal structure of Zn2[(1,1′-(hexane-1,6-diyl)bis(3-(pyridin-3-yl)urea))·(H2O)2·(DMF)2·(SO4)2], C24H50N8O18S2Zn2
  23. The crystal structure of 2-anilino-1,4-naphthoquinone, C10H11NO2
  24. Crystal structure of (E)-2-(2-(4-(diethylamino)styryl)-1-ethyl-1,4-dihydroquinolin-4-yl) malononitrile, C26H26N4
  25. Crystal structure of ethyl 2-((2,6-dichloro-4-(cyanomethyl)phenyl) amino)benzoate, C17H14Cl2N2O2
  26. Synthesis and crystal structure of 2-(3-oxo-3-phenylpropyl)isoindoline-1,3-dione, C17H13NO3
  27. The crystal structure of bis(acetonitrile-κ1N)tetrakis(μ2-2,6-difluorobenzoato-κ2O:O′)rhodium(II) (Rh–Rh), C32H18F8O8N2Rh2
  28. The crystal structure of a new polymorph of 6-hydroxy-2-naphthoic acid, C11H8O3
  29. The crystal structure of [(8-carboxymethoxy-quinoline-2-carboxylate-κ4N,O,O,O)-2,2′-bipyridine-κ2N-copper(II)] tetrahydrate, C22H23N3O9Cu
  30. The crystal structure of ethyl 4-hydroxy-2-(4-methoxyphenyl)-5-oxo-1-(2-oxo-2H-chromen-6-yl)-2,5-dihydro-1H-pyrrole-3-carboxylate, C23H19NO7
  31. Crystal structure of 7-hydroxy-3,4-dihydronaphthalen-1(2H)-one, C10H10O2
  32. Crystal structure of bis(tetrapropylammonium) dodecacarbonyltetratelluridotetraferrate(2-), (Pr4N)2[Fe4Te4(CO)12]
  33. The crystal structure of poly[bis(μ2−3−aminopyridine−4−carboxylatoκ2N:O)Zinc(II)], [Zn(C6H5N2O2)2] n
  34. The crystal structure of methyl 5-nitro-2-(tosyloxy)benzoate, C15H13NO7S
  35. The crystal structure of 18-crown-6 ― tetraaqua-dichlorido-di-μ2-chloridodicopper(II) (2/1), C12H32O10Cu2Cl4
  36. Crystal structure of 6,6a,7,8,9,10-hexahydro-5H-pyrazino [2,3-e]pyrido[1,2-a]pyrazine, C10H14N4
  37. Crystal structure of catena-poly-{diaqua-bis[μ-(((4-chlorophenyl)sulfonyl)glycinato-κO)](μ2-4, 4′-bipyridine-κ2N:N′)cobalt(II)} dihydrate, C26H30Cl2CoN4O12S2
  38. Crystal structure of bis{N′-[1,3-diphenylprop-2-en-1-ylidene]-N-phenylcarbamohydrazonothioato}zinc(II), C44H36N6S2Zn
  39. Crystal structure of tetraaqua-bis(((4-chlorophenyl)sulfonyl)glycinato-κO)cobalt(II) dihydrate, C16H26Cl2CoN2O14S2
  40. Crystal structure of 2-(5-phenyl-1-(quinolin-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)phenol, C24H19N3O
  41. Crystal structure of 2-((2-fluoro-4-(trifluoromethyl)phenyl)(hydroxy)methyl)-7-methoxy-3,4-dihydronaphthalen-1((2H))-one, C19H16F4O3
  42. Crystal structure of 2-amino-4-(2-fluoro-3-(trifluoromethyl)phenyl)-9-methoxy-1,4,5,6-tetrahydrobenzo[h]quinazolin-3-ium chloride, C20H18ClF4N3O
  43. Crystal structure of (2-phenylimino methylquinoline-κ 2 N,N′)-bis(1–phenylpyrazole-κ 2 C,N)-iridium(III) hexafluorophosphate, C34H26F6IrN6P
  44. Crystal structure of (3-hydroxy-4-methoxyphenyl)(pyrrolidin-1-yl)methanone, C12H15NO3
  45. The crystal structure of bis(trimethylsulfoxonium) catena-poly[µ2-hexabromido-indium(III)sodium(I)] C6H18O2S2NaInBr6
  46. Crystal structure of N-cyclopropyl-3-hydroxy-4-methoxybenzamide, C11H13NO3
  47. The crystal structure of (bis(benzimidazol-2-yl-methyl)amine-κ3N,N,N )-(dihydrogen L-malate-κ2O,O )copper(II) perchlorate dihydrate, CuC20H24ClN5O12
  48. Crystal structure of (1E,1′E)-4,4′-(9,9-diethyl-9H-fluorene-2,7-diyl)dibenzaldehyde dioxime, C31H28N2O2
  49. Crystal structure of diethyl 1,9-bis(4-fluorophenyl)-4,6-diphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta [b]pyridine-3,7(2H)-dicarboxylate, C40H36F2N2O4
  50. Crystal structure of bis(benzene-1 carboxylato-O 3,5-carboxyl-κ1O)-[(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)nickel(II) ─ benzene-1,3,5-tricarboxylic acid ─ water (1/2/4), C52H66N4NiO28
  51. Crystal structure of 1,4-dibromo-2,5-bis(2-methoxyethoxy)benzene-1,4-diol, C12H16Br2O4
  52. Crystal structure of dicarbonyl[N,N′-(1,2-dimethyl-1,2-ethanediylidene)bis[2,6-bis(1-methylethyl)benzenamine]-N,N′]nickel(0), C30H40N2NiO2
  53. Crystal structure of 1,4-dibromo-2,5-bis(prop-2-yn-1-yloxy)benzene, C12H8Br2O2
  54. Crystal structure of O-(3-(benzo[d]thiazol-2-yl)naphthalen-2-yl) O-phenyl carbonothioate, C24H15NO2S2
  55. The crystal structure of (E)-4-fluoro-N′-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H15FN2O2
  56. Crystal structure of (E)-1-(benzo[d]thiazol-2-yl)-N-(4,5-dihydropyren-2-yl)methanimine, C24H16N2S
  57. Crystal structure of 3-((4-bromophenyl)thio)-1H-indole, C14H10BrNS
  58. Synthesis and crystal structure of 1-((7-hydroxy-3-(4-hydroxy-3-nitrophenyl)-4-oxo-4H-chromen-8-yl)methyl)piperidin-1-ium-4-carboxylate monohydrate, C22H22N2O9
  59. Synthesis and crystal structure of (3E,5S,10S,13S,14S,17Z)-17-ethylidene-10,13-dimethylhexadecahydro-3H-cyclopenta[α]phenanthren-3-one O-(methacryloyl) oxime, C50H74N2O4
  60. Crystal structure of the hydrogen storage active phase La12Mg46LiMn
  61. The crystal structure of the salt: 4-((1,3-dioxoisoindolin-2-yl)carbamoyl)pyridine-1-ium 2-carboxybenzoate, C14H10N3O3·C8H5O4
  62. Crystal structure of (2-(2-pyridine)-benzimidazole-κ2 N,N′)-bis(1-phenylpyrazole-κ2 C,N)iridium(III) hexafluorophosphate, C30H22F6IrN7P
  63. Crystal structure of dichlorido-bis[2-(2,4-difluorophenyl)pyridine-κ1N]platinum(II), C22H14Cl2F4N2Pt
  64. Crystal structure of (5R,8R,9R,10R,12R,13R,14R, 17S,17Z)-2-((3-fluoropyridin-4-yl)methylene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3-one, C36H52FNO3
Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0343/html
Button zum nach oben scrollen