Home Physical Sciences The crystal structure of catena-poly[(μ 2-2H-1,2,3-triazole-4,5-dicarboxylato-κ 2 O, O′)-(μ 2-1,3-bis((1H-imidazol-1-yl)methyl)benzene-κ 2 N,N′) zinc(II)], C18H15N7O4Zn
Article Open Access

The crystal structure of catena-poly[(μ 2-2H-1,2,3-triazole-4,5-dicarboxylato-κ 2 O, O′)-(μ 2-1,3-bis((1H-imidazol-1-yl)methyl)benzene-κ 2 N,N′) zinc(II)], C18H15N7O4Zn

  • Qian Mao ORCID logo EMAIL logo , Yanfei Wang , Zhonghua Zhang and Jinlan Ji EMAIL logo
Published/Copyright: September 5, 2023

Abstract

C18H15N7O4Zn, triclinic, P 1 (no. 2), a = 9.1100(8) Å, b = 10.6451(7) Å, c = 12.0479(8) Å, α = 95.238(5), β = 112.154(7), γ = 112.971(7), V = 956.56(13) Å3, Z = 2, R gt (F) = 0.0264, wR ref (F 2) = 0.0731, T = 298 K.

CCDC no.: 2280781

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.28 × 0.20 × 0.15 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.33 mm−1
Diffractometer, scan mode: XtaLAB mini (ROW), ω
θ max, completeness: 25.1°, >99 %
N(hkl)measured , N(hkl)uniqueR int: 5299, 3397, 0.022
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3113
N(param)refined: 272
Programs: CrysAlisPRO [1], Olex2 [2], SHELX [3, 4], PLATON [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Zn1 0.87434 (3) 0.82194 (2) 0.05284 (2) 0.02718 (10)
O1 0.57230 (19) 0.71680 (17) −0.00756 (15) 0.0419 (4)
O2 0.3328 (2) 0.7499 (2) −0.10723 (18) 0.0548 (5)
N1 0.7839 (2) 0.94259 (16) −0.05066 (15) 0.0258 (3)
O3 0.2637 (2) 0.9101 (2) −0.2384 (2) 0.0597 (5)
H3 0.291753 0.868132 −0.186709 0.089*
N7 0.8489 (2) 0.64430 (17) 0.95727 (15) 0.0293 (4)
N2 0.8549 (2) 1.05215 (17) −0.09257 (16) 0.0295 (4)
N6 0.8794 (2) 0.50027(18) 0.83539 (16) 0.0320 (4)
N3 0.7315 (2) 1.08518 (18) −0.16350 (17) 0.0316 (4)
O4 0.4019 (2) 1.07885 (19) −0.30825 (19) 0.0579 (5)
N4 0.9107 (2) 0.82373 (18) 0.22759 (15) 0.0309 (4)
N5 0.8448 (3) 0.7734 (2) 0.38047 (17) 0.0407 (5)
C2 0.5761 (2) 0.9945 (2) −0.16769 (18) 0.0276 (4)
C1 0.6087 (2) 0.9048 (2) −0.09637 (18) 0.0257 (4)
C18 0.7270 (3) 0.5061 (2) 0.9364 (2) 0.0361 (5)
H18 0.645613 0.478529 0.969200 0.043*
C3 0.4070 (3) 0.9992 (2) −0.2444 (2) 0.0393 (5)
C16 0.9385 (3) 0.6350 (2) 0.89491 (19) 0.0324 (5)
H16 1.030667 0.712461 0.892832 0.039*
C4 0.4958 (3) 0.7804 (2) −0.0673 (2) 0.0340 (5)
C6 1.0643 (3) 0.8929 (3) 0.3392 (2) 0.0405 (5)
H6 1.177359 0.951246 0.347882 0.049*
C15 0.9313 (3) 0.4518 (3) 0.7447 (2) 0.0412 (5)
H15A 0.919124 0.357188 0.745122 0.049*
H15B 1.055389 0.514977 0.768145 0.049*
C13 0.8149 (3) 0.4496 (2) 0.6151 (2) 0.0382 (5)
C17 0.7447 (3) 0.4177 (2) 0.8612 (2) 0.0397 (5)
H17 0.678055 0.319325 0.832184 0.048*
C5 0.7829 (3) 0.7542 (2) 0.2580 (2) 0.0366 (5)
H5 0.663746 0.698487 0.200632 0.044*
C14 0.8345 (3) 0.5765 (2) 0.5851 (2) 0.0389 (5)
H14 0.926337 0.661864 0.643305 0.047*
C7 1.0242 (3) 0.8621 (3) 0.4340 (2) 0.0469 (6)
H7 1.103066 0.894850 0.518622 0.056*
C9 0.7208 (4) 0.5793 (3) 0.4708 (2) 0.0445 (6)
C12 0.6794 (4) 0.3235 (3) 0.5264 (2) 0.0508 (6)
H12 0.664164 0.237358 0.544294 0.061*
C8 0.7354 (4) 0.7187 (3) 0.4458 (3) 0.0540 (7)
H8A 0.616362 0.706903 0.395952 0.065*
H8B 0.786585 0.788705 0.524613 0.065*
C10 0.5860 (4) 0.4508 (3) 0.3834 (2) 0.0591 (7)
H10 0.509172 0.450408 0.305874 0.071*
C11 0.5661 (4) 0.3246 (3) 0.4113 (3) 0.0647 (8)
H11 0.475905 0.239172 0.352403 0.078*

1 Source of materials

All chemicals were purchased from commercial sources and used as received. A mixture of Zn(CH3COO)2·2H2O (0.1 mmol), 2H-1,2,3 triazole-4,5-dicarboxylic acid (H3tda, 0.1 mmol), 1,3-bis((1H-imidazol-1-yl)methyl)benzene (1,3-bib, 0.1 mmol), NaOH (0.2 mmol) and aqueous ethanol (10 mL/5 mL) was added to a 25 mL Teflon-lined stainless steel reactor and heated at 413 K for 3 days. After cooling to room temperature at a rate of 283 K h−1, colorless block crystals of the title compound were obtained. Yield: 20 mg (44 %, based on ligand H3tda). Anal. Calcd. for C18H15N7O4Zn (%): C, 47.08; H, 3.27; N, 21.36. Found: C, 47.10; H, 3.26; N, 21.39. (CCDC number 2280781).

2 Experimental details

Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Using OLEX2 [2], the structure was solved with the SHELXT [3] structure solution program and refined with the SHELXL [4] refinement package. Carbon-bound hydrogen atoms were placed in calculated positions (d = 0.93 Å for CH and d = 0.97 Å for CH2) and were included in the refinement in the riding (CH) or rotating (CH2) model approximation, with U iso(H) set to 1.2U eq(C) for –CH and for –CH2. The H atoms of phenolic hydroxyl groups in 1 were refined as rotating groups, with d O−H = 0.82 Å and U iso(H) = 1.5U eq(O).

3 Comment

The coordination polymers (CPs) or metal-organic frameworks (MOFs) as an important type of crystalline materials have undergone tremendous development attributable to their potential applications as functional materials, which include luminescence [5], gas sorption [6], catalysis [7], and magnetism [8]. 1H-1,2,3-triazole-4,5-dicarboxylic acid (H3tda), as an excellent N- and O-donor, is soluble in water and can be partially or fully deprotonated allowing for the generation of abundant coordination modes such as μ 3-, μ 4-, μ 5- and μ 6-bridging modes in monodentate, chelating-bidentate and bridging-bidentate fashions linking metal centers. On the other hand, the aromatic triazole ring of H3tda may take part in the formation of ππ and C–H⋯π interactions whilst the oxygen and nitrogen atoms may act as the acceptors or donors to form intermolecular and intramolecular hydrogen bonds (O/N–H⋯O/N, C–H⋯O/N). To date, some complexes based on the H3tda ligand and different metal ions have been reported [9], [10], [11]. In addition, the introduction of appropriate secondary ligands has been demonstrated to be a very effective approach for constructing diverse coordination frameworks. The two-ligand assembly system, consisting of two spacers and capable of providing more variability to build much more complicated structures [12, 13]. Taking into the mentioned above, we selected H3tda as ligand and luminescent d 10 ions (ZnII) as metal center in the presence of N-containing secondary ligands to construct the new CPs.

The single-crystal X-ray diffraction structural analysis has revealed that I is an one dimensional coordination polymer, whose asymmetric unit is comprised of one Zn2+, one partly deprotonated ligand Htda2− and a neutral auxiliary N-containing ligand 1,3-bib (Figure 1). The metal ion Zn2+ is five-coordinated with N1, N2ii, N4, N7i and O1 (symmetry codes: i x, y, z–1; ii −x, 2–y, −z) atoms from two symmetry-related Htda2− and 1,3-bib ligands, resulting in a slightly distorted trigonal bipyramid {ZnN4O} configuration. The Zn–O bond distance is 2.3002(15) Å, and those of Zn–N distances are 2.0012(16) to 2.1261(16) Å, within the normal range [14]. The N(O)–Zn–O(N) angles fall in the 75.36(6)–169.37(6) range. It is interesting to note that the deprotonated carboxylate group of the Htda2− anion coordinate Zn(II) in a monodentate bridging mode (η1: η0) and the non-deprotonated carboxylate group features formation a intramolecular hydrogen bond (O3–H3⋯O2) with the adjacent deprotonated uncoordinated carboxylate O2. Two symmetry-related Htda2− ligands bond to two Zn2+ cations by the upside-down fashion through their deprotonated carboxylate O-atoms (O1, O1iii) and triazole N-atoms (N1, N2, N1iii, N2iii; symmetry codes: iii 2–x, 2–y, −z), resulting in substructural blocks {[Zn(Htda)]2}. These neighboring {[Zn(Htda)]2} are further interconnected through two μ 2 1,3-bib bridges to generate an one dimensional zigzag infinite chain framework with a Zn⋯Zn separation of 12.04(8)°.

Figure 1: 
The asymmetric unit structure of I, showing the atom numbering scheme. Displacement ellipsoids are shown at the 30 % probability level. The dashed line shows the intra-molecular O–H⋯O hydrogen bond.
Figure 1:

The asymmetric unit structure of I, showing the atom numbering scheme. Displacement ellipsoids are shown at the 30 % probability level. The dashed line shows the intra-molecular O–H⋯O hydrogen bond.


Corresponding authors: Qian Mao and Jinlan Ji, Department of Chemical Engineering, Jincheng Institute of Technology, Jincheng, Shanxi, 048026, P.R. China, E-mail: ,

  1. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Research funding: None declared.

References

1. Oxford Diffraction Ltd. CrysAlisPRO; Rigaku Oxford Diffraction. Version 1.171.39.6a: England, 2018.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Li, J., Wang, A., Qiu, S., Wang, X., Li, J. A 12-connected [Y4((μ3–OH)4)]8+ cluster-based luminescent metal-organic framework for selective turn-on detection of F− in H2O. Molecules 2023, 28, 1893; https://doi.org/10.3390/molecules28041893.Search in Google Scholar PubMed PubMed Central

6. Knebel, A., Caro, J. Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nat. Nanotechnol. 2022, 17, 911–923; https://doi.org/10.1038/s41565-022-01168-3.Search in Google Scholar PubMed

7. Yuan, G., Shao, K.-Z., Du, D.-Y., Wang, X.-L., Su, Z.-M. Syntheses, structures, and photoluminescence of d10 coordination architectures: from 1D to 3D complexes based on mixed ligands. Solid State Sci. 2011, 13, 1083–1091; https://doi.org/10.1016/j.solidstatesciences.2011.01.014.Search in Google Scholar

8. Li, J. X., Zhang, Y. H., Du, Z. X., Feng, X. One-pot solvothermal synthesis of mononuclear and oxalate-bridged binuclear nickel compounds: structural analyses, conformation alteration and magnetic properties. Inorg. Chim. Acta 2022, 530, 120697; https://doi.org/10.1016/j.ica.2021.120697.Search in Google Scholar

9. Sun, Y.-G., Gao, X., Xiong, G., Zong, W.-H., Ding, F., Xu, Z.-H., Wang, S.-J., You, L.-X., Ren, B.-Y., Gao, E.-J. Four 3d-4d heterometallic coordination polymers based on 1,2,3-triazole-4,5-dicarboxylate: synthesis, structures, and magnetic properties. Inorg. Chim. Acta 2014, 409, 497–502; https://doi.org/10.1016/j.ica.2013.09.039.Search in Google Scholar

10. Tong, X.-L., Xin, J.-H., Guo, W.-H., Zhu, X.-P. Two complexes based on 1H-1,2,3-triazole-4,5-dicarboxylic acid: hydrothermal synthesis, crystal structures and spectral properties. J. Coord. Chem. 2011, 64, 2984–2994; https://doi.org/10.1080/00958972.2011.611243.Search in Google Scholar

11. Zou, J.-Y., Gao, H.-L., Shi, W., Cui, J.-Z., Cheng, P. Auxiliary ligand-assisted structural diversities of three metal-organic frameworks with potassium 1H-1,2,3-triazole-4,5-dicarboxylic acid: syntheses, crystal structures and luminescence properties. CrystEngComm 2013, 15, 2682–2687; https://doi.org/10.1039/c3ce26854c.Search in Google Scholar

12. Dai, J. C., Wu, X. T., Hu, S. M., Fu, Z. Y., Zhang, J. J., Du, W. X., Zhang, H. H., Sun, R. Q. Crystal engineering of the coordination architecture of metal polycarboxylate complexes by hydrothermal synthesis: assembly and characterization of four novel cadmium polycarboxylate coordination polymers based on mixed ligands. Eur. J. Inorg. Chem. 2004, 10, 2096–2106; https://doi.org/10.1002/ejic.200300850.Search in Google Scholar

13. Fournier, E., Lebrun, F., Drouin, M., Decken, A., Harvey, P. D. Preparation and solid-state characterization of mixed-ligand coordination/organometallic oligomers and polymers of copper(I) and silver(I) using diphosphine and mono-and diisocyanide ligands. Inorg. Chem. 2004, 43, 3127–3135; https://doi.org/10.1021/ic034806m.Search in Google Scholar PubMed

14. Zheng, Z., Wu, R., Li, J., Sun, Y. Synthesis and crystal structure of potassium and manganese complexes of 1,2,3-triazole-4,5-dicarboxylic acid. J. Coord. Chem. 2009, 62, 2324–2336; https://doi.org/10.1080/00958970902822119.Search in Google Scholar

Received: 2023-07-13
Accepted: 2023-08-20
Published Online: 2023-09-05
Published in Print: 2023-12-15

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of bis(dimethylammonium) poly[(μ4-1,1′-(1,4-phenylenebis(methylene))bis(1H-pyrazole-3,5-dicarboxylato))-κ6O1, N2:O2:O3:O1′,N2′]nickel (II)], C22H26N6NiO8
  4. Hydrothermal synthesis and crystal structure of catena-poly[diaqua-bis(μ2-4-((pyridin-4-ylmethyl)amino)benzoato-κ2N:O)cobalt(II)] 4,4′-bipyridine – water (1/2/2)
  5. Crystal structure of (2S,3S,4S,5S, Z)-2,3,5,6-tetrakis(benzyloxy)-4-hydroxyhexanal oxime, C34H37NO6
  6. The crystal structure of hexakis(3-thiophenecarboxylato-κ2O,O″)-bis(1,10-phenanthroline-κ2N,N′) trimanganese(II), C54H34N4O12S6Mn3
  7. Crystal structure of catena-poly[(μ2-1,4-di(pyridin-4-yl)benzene-κ2N:N′)-(4-bromobenzoate-κ2O:O′)-(μ-2-bromobenzoate-κ2O,O′)nickel(II)] – water (2/1), C30H21Br2N2NiO4.5
  8. The crystal structure of poly[(μ3-1,3-phenylenedioxydiacetate-κ5O,O,O′,O″,O‴)-bis(4′-(4-(1H-imidazol-1-yl)phenyl)-4,2′:6′,4″-terpyridine-kN) cadmium(II)], C58H42CdN10O6
  9. The crystal structure of 5-chloro-6′-methyl-3-(4-(methylsulfonyl)phenyl)-[2,3′-bipyridin]-1′-ium 4-methylbenzenesulfonate
  10. Crystal structure of poly[(μ-benzoato)-(μ-cis-4–hydroxy-D-proline)lithium], C12H14LiNO5
  11. The crystal structure of catena-poly[aqua-(4-iodopyridine-2,6-dicarboxylato-κ3N,O,O)-copper(II)] monohydrate, C7H6NO6ICu
  12. The crystal structure of catena-[diaqua-(4-acetylphenoxyacetato-κ2O,O)-bis(4-acetylphenoxyacetato-κ3O,O:O)-dihydrate-lanthanum(III)]–4,4′-bipyridine (2/1), C35H35NO14La
  13. The crystal structure of catena-poly[(4-iodopyridine-2,6-dicarboxylato-κ4 O,N,O′,O′′)(4-imidazol-1-yl-pyridine-κN)copper(II)], C15H9N4O4ICu
  14. Crystal structure of polybis(μ 4-3,5-dicarboxylatopyrazol-1-yl)-bis(N,N-dimethylformamide)tri-copper(II)–acetonitrile (1/2), C20H22Cu3N8O10
  15. Crystal structure of poly[(μ2-5-hydroxy-isophthalato-κ4O,O′:O″,O‴)-(μ2-1,5-bis(imidazol-2-methyl)pentane-κ2N:N′)cadmium(II)], C21H24CdN4O5
  16. The crystal structure of poly[bis(μ2-1,4-bi(1-imidazolyl)benzene-κ2N:N′)bis(μ2-4,4′-methylenebis(3-hydroxy-2-naphthoate)-κ2O:O′)cobalt(II)], C35H24CoN4O6
  17. The crystal structure of a cobalt-vanadium-oxido hydrate
  18. The crystal structure of catena-poly[(μ 2-2H-1,2,3-triazole-4,5-dicarboxylato-κ 2 O, O′)-(μ 2-1,3-bis((1H-imidazol-1-yl)methyl)benzene-κ 2 N,N′) zinc(II)], C18H15N7O4Zn
  19. Crystal structure of poly[diaqua-(bis(m2-1,4-bis(imidazol-1-ylmethyl)benzene)-κ2N,N′-manganese] dichloride, C28H32MnN8O2Cl2
  20. The crystal structure of 9,10-dimethoxy-5,6-dihydro-[1,3]dioxolo[4,5-g]isoquinolino [3,2-a]isoquinolin-7-ium (E)-3-(4-nitrophenyl)acrylate pentahydrate, C29H34N2O13
  21. Crystal structure of poly[(μ6-ammoniotris(methylene))tris(hydrogen phosphonato)cadmium(II)], C3H10CdNO9P3
  22. Crystal structure of Zn2[(1,1′-(hexane-1,6-diyl)bis(3-(pyridin-3-yl)urea))·(H2O)2·(DMF)2·(SO4)2], C24H50N8O18S2Zn2
  23. The crystal structure of 2-anilino-1,4-naphthoquinone, C10H11NO2
  24. Crystal structure of (E)-2-(2-(4-(diethylamino)styryl)-1-ethyl-1,4-dihydroquinolin-4-yl) malononitrile, C26H26N4
  25. Crystal structure of ethyl 2-((2,6-dichloro-4-(cyanomethyl)phenyl) amino)benzoate, C17H14Cl2N2O2
  26. Synthesis and crystal structure of 2-(3-oxo-3-phenylpropyl)isoindoline-1,3-dione, C17H13NO3
  27. The crystal structure of bis(acetonitrile-κ1N)tetrakis(μ2-2,6-difluorobenzoato-κ2O:O′)rhodium(II) (Rh–Rh), C32H18F8O8N2Rh2
  28. The crystal structure of a new polymorph of 6-hydroxy-2-naphthoic acid, C11H8O3
  29. The crystal structure of [(8-carboxymethoxy-quinoline-2-carboxylate-κ4N,O,O,O)-2,2′-bipyridine-κ2N-copper(II)] tetrahydrate, C22H23N3O9Cu
  30. The crystal structure of ethyl 4-hydroxy-2-(4-methoxyphenyl)-5-oxo-1-(2-oxo-2H-chromen-6-yl)-2,5-dihydro-1H-pyrrole-3-carboxylate, C23H19NO7
  31. Crystal structure of 7-hydroxy-3,4-dihydronaphthalen-1(2H)-one, C10H10O2
  32. Crystal structure of bis(tetrapropylammonium) dodecacarbonyltetratelluridotetraferrate(2-), (Pr4N)2[Fe4Te4(CO)12]
  33. The crystal structure of poly[bis(μ2−3−aminopyridine−4−carboxylatoκ2N:O)Zinc(II)], [Zn(C6H5N2O2)2] n
  34. The crystal structure of methyl 5-nitro-2-(tosyloxy)benzoate, C15H13NO7S
  35. The crystal structure of 18-crown-6 ― tetraaqua-dichlorido-di-μ2-chloridodicopper(II) (2/1), C12H32O10Cu2Cl4
  36. Crystal structure of 6,6a,7,8,9,10-hexahydro-5H-pyrazino [2,3-e]pyrido[1,2-a]pyrazine, C10H14N4
  37. Crystal structure of catena-poly-{diaqua-bis[μ-(((4-chlorophenyl)sulfonyl)glycinato-κO)](μ2-4, 4′-bipyridine-κ2N:N′)cobalt(II)} dihydrate, C26H30Cl2CoN4O12S2
  38. Crystal structure of bis{N′-[1,3-diphenylprop-2-en-1-ylidene]-N-phenylcarbamohydrazonothioato}zinc(II), C44H36N6S2Zn
  39. Crystal structure of tetraaqua-bis(((4-chlorophenyl)sulfonyl)glycinato-κO)cobalt(II) dihydrate, C16H26Cl2CoN2O14S2
  40. Crystal structure of 2-(5-phenyl-1-(quinolin-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)phenol, C24H19N3O
  41. Crystal structure of 2-((2-fluoro-4-(trifluoromethyl)phenyl)(hydroxy)methyl)-7-methoxy-3,4-dihydronaphthalen-1((2H))-one, C19H16F4O3
  42. Crystal structure of 2-amino-4-(2-fluoro-3-(trifluoromethyl)phenyl)-9-methoxy-1,4,5,6-tetrahydrobenzo[h]quinazolin-3-ium chloride, C20H18ClF4N3O
  43. Crystal structure of (2-phenylimino methylquinoline-κ 2 N,N′)-bis(1–phenylpyrazole-κ 2 C,N)-iridium(III) hexafluorophosphate, C34H26F6IrN6P
  44. Crystal structure of (3-hydroxy-4-methoxyphenyl)(pyrrolidin-1-yl)methanone, C12H15NO3
  45. The crystal structure of bis(trimethylsulfoxonium) catena-poly[µ2-hexabromido-indium(III)sodium(I)] C6H18O2S2NaInBr6
  46. Crystal structure of N-cyclopropyl-3-hydroxy-4-methoxybenzamide, C11H13NO3
  47. The crystal structure of (bis(benzimidazol-2-yl-methyl)amine-κ3N,N,N )-(dihydrogen L-malate-κ2O,O )copper(II) perchlorate dihydrate, CuC20H24ClN5O12
  48. Crystal structure of (1E,1′E)-4,4′-(9,9-diethyl-9H-fluorene-2,7-diyl)dibenzaldehyde dioxime, C31H28N2O2
  49. Crystal structure of diethyl 1,9-bis(4-fluorophenyl)-4,6-diphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta [b]pyridine-3,7(2H)-dicarboxylate, C40H36F2N2O4
  50. Crystal structure of bis(benzene-1 carboxylato-O 3,5-carboxyl-κ1O)-[(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)nickel(II) ─ benzene-1,3,5-tricarboxylic acid ─ water (1/2/4), C52H66N4NiO28
  51. Crystal structure of 1,4-dibromo-2,5-bis(2-methoxyethoxy)benzene-1,4-diol, C12H16Br2O4
  52. Crystal structure of dicarbonyl[N,N′-(1,2-dimethyl-1,2-ethanediylidene)bis[2,6-bis(1-methylethyl)benzenamine]-N,N′]nickel(0), C30H40N2NiO2
  53. Crystal structure of 1,4-dibromo-2,5-bis(prop-2-yn-1-yloxy)benzene, C12H8Br2O2
  54. Crystal structure of O-(3-(benzo[d]thiazol-2-yl)naphthalen-2-yl) O-phenyl carbonothioate, C24H15NO2S2
  55. The crystal structure of (E)-4-fluoro-N′-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H15FN2O2
  56. Crystal structure of (E)-1-(benzo[d]thiazol-2-yl)-N-(4,5-dihydropyren-2-yl)methanimine, C24H16N2S
  57. Crystal structure of 3-((4-bromophenyl)thio)-1H-indole, C14H10BrNS
  58. Synthesis and crystal structure of 1-((7-hydroxy-3-(4-hydroxy-3-nitrophenyl)-4-oxo-4H-chromen-8-yl)methyl)piperidin-1-ium-4-carboxylate monohydrate, C22H22N2O9
  59. Synthesis and crystal structure of (3E,5S,10S,13S,14S,17Z)-17-ethylidene-10,13-dimethylhexadecahydro-3H-cyclopenta[α]phenanthren-3-one O-(methacryloyl) oxime, C50H74N2O4
  60. Crystal structure of the hydrogen storage active phase La12Mg46LiMn
  61. The crystal structure of the salt: 4-((1,3-dioxoisoindolin-2-yl)carbamoyl)pyridine-1-ium 2-carboxybenzoate, C14H10N3O3·C8H5O4
  62. Crystal structure of (2-(2-pyridine)-benzimidazole-κ2 N,N′)-bis(1-phenylpyrazole-κ2 C,N)iridium(III) hexafluorophosphate, C30H22F6IrN7P
  63. Crystal structure of dichlorido-bis[2-(2,4-difluorophenyl)pyridine-κ1N]platinum(II), C22H14Cl2F4N2Pt
  64. Crystal structure of (5R,8R,9R,10R,12R,13R,14R, 17S,17Z)-2-((3-fluoropyridin-4-yl)methylene)-12-hydroxy-4,4,8,10,14-pentamethyl-17-((R)-2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3-one, C36H52FNO3
Downloaded on 20.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0323/html?lang=en&srsltid=AfmBOopCwtorJ7JZr3BncVJUF_dUl9Px1ZP1R1eo7duKze9cznQ9LV18
Scroll to top button