Startseite Crystal structure of 4-bromo-3-nitro-1H-pyrazole-5-carboxylic acid monohydrate, C4H2N3BrO4·H2O
Artikel Open Access

Crystal structure of 4-bromo-3-nitro-1H-pyrazole-5-carboxylic acid monohydrate, C4H2N3BrO4·H2O

  • Ana Radović , Gerald Giester , Zoran D. Tomić ORCID logo , David Kočović und Željko K. Jaćimović ORCID logo EMAIL logo
Veröffentlicht/Copyright: 5. Juli 2023

Abstract

C4H2N3BrO4·H2O, monoclinic, P21/c (no. 14), a = 7.177(2) Å, b = 10.999(3) Å, c = 10.414(3) Å, β =  100.145 ( 11 ) , V = 809.3(4) Å3, Z = 4, R g t (F) = 0.0379, w R r e f (F2) = 0.0714, T = 200 K

CCDC no.: 2269769

1 Source of materials

4-bromo-3-nitro-1H-pyrazole-5-carboxylic acid (L) was dissolved in a warm ethanol and added to a warm ethanol solution of Zn(NO3)2·6H2O in a molar ratio of 1:2. Colorless solution was left to crystallize. After two days, the colorless single crystals of the title compound (L·H2O) were filtered and washed with ethanol. L and Zn(NO3)2·6H2O were purchased from Sigma-Aldrich.

2 Experimental details

The N-bound H atom were positioned geometrically and included as riding atom with Uiso(H) set to 1.2Ueq(N). The H atom of the hydroxyl group was allowed to rotate around the C–O bond, with O–H distance refined to best fit the experimental electron density (HFIX 148 in the SHELX program suite [2], with Uiso(H) set to 1.5Ueq(O). Hydrogen atoms from water were located from a difference-Fourier map and their positions were refined with Uiso(H) set to 1.5Ueq(O) (Tables 1 and 2).

Table 1:

Data collection and handling.

Crystal: Stick, colorless
Size: 0.15 × 0.10 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 5.08 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω-scans
θmax, completeness: 26.4°, >99%
N (hkl)measured, N(hkl)unique, Rint: 16034, 1646, 0.048
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 1323
N(param)refined: 126
Programs: Bruker programs [1], SHELX [2], Mercury [3], PLATON [4], WinGX [5, 6]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

x y z Uiso*/Ueq
Br1 0.20057 (6) 0.88241 (3) 0.49285 (4) 0.04232 (15)
O1 0.4727(4) 0.8378(2) 0.7732(3) 0.0384(7)
O2 0.5981(4) 0.6531(2) 0.8218(3) 0.0395(7)
H2 0.652(6) 0.686(2) 0.885(4) 0.059*
O3 0.0057(5) 0.7041(3) 0.2786(3) 0.0559(9)
O4 0.0196(5) 0.5080(3) 0.2865(3) 0.0541(9)
N1 0.3681(4) 0.5500(3) 0.6203(3) 0.0284(7)
H1 0.4333 0.4994 0.6764 0.034*
N2 0.2571(4) 0.5140(3) 0.5108(3) 0.0299(7)
N3 0.0609(5) 0.6083(3) 0.3309(3) 0.0366(8)
C3 0.1877(5) 0.6175(3) 0.4560(3) 0.0276(8)
C4 0.2516(5) 0.7195(3) 0.5292(3) 0.0264(8)
C5 0.3709(5) 0.6720(3) 0.6368(3) 0.0257(8)
C6 0.4857(5) 0.7309(3) 0.7511(3) 0.0290(8)
O5 0.7550(5) 0.7563(3) 1.0365(3) 0.0442(8)
H3 0.765(7) 0.827(5) 1.037(5) 0.066*
H4 0.822(7) 0.731(5) 1.090(5) 0.066*

3 Comment

The pyrazoles possess many biological and pharmaceutical properties [7]. They also have interesting coordination properties [8]. Important use of pyrazole complexes is in the extraction of metal ions [9]. Pyrazoles are also important for the synthesis of metal-organic frameworks [10]. Supramolecular aspect is important for understanding of the pyrazoles chemistries [11]. Main driving force for self-assembly of pyrazolyl molecules are hydrogen bonds [12]. Pyrazolyl molecules crystallize in a variety of motifs determined by N–H··N hydrogen bonds [13]. Capacity for nonbonding interaction of substituents additionally influences the aggregation of pyrazole derivatives [14]. Halogen bonding can be competitive to hydrogen bonding [15]. Both interactions are possible in the halogenated pyrazoles. As a continuation of our previous work [16], [17], [18], [19] we report molecular and crystal structure of 4-bromo-3-nitro-1H-pyrazole-5-carboxylic acid monohydrate. Title pyrazolyl compound (L) exhibits high capacity for non-covalent bonding. COOH, N–H··O/N [20], NO2 [21] and Br [22] can form hydrogen bonds. Br atoms can form Br··Br contacts of non-covalent nature [23]. The ORTEP diagram in the upper part of the figure depicts assymetric unit and atom labeling. Hydrogen bonds N1–H1··O1i = 1.94 Å/ 151 , O2–H2··O5ii = 1.80 Å/ 174 , O5–H3··N2iii = 2.12 Å/ 165 and O5–H4··O3iv = 2.18 Å/ 163 form layers of molecules, depicted in the lower part of the figure (symmetry codes: i = 1 − x, 1/2 + y, 1/2 − z; ii = x, 1/2 − y, −1/2 + z; iii = 1 − x, 1 − y, 1 − z; iv = −1 + x, 1/2 − y, −1/2 + z). There are no significant intermolecular contacts between the layers. Two strong acceptors of hydrogen bonds, O4 and Br, do not take part in the non-covalent contacts. Also, there are no Br··Br interactions. In the related molecules, 4-bromo-3,5-diphenylpyrazole [24], 3(5)-phenyl-4-bromo-5(3)-methylpyrazole and 5-phenyl-4-bromo-3-methylpyrazole [25] Br is at the same position, relative to NH, as in L. As opposed to the title structure, in both [24, 25], Br··Br contacts of type I are present [26]. Search of CSD gave one pyrazole derivative with NO2 and COOH in the same stereochemical relations as in L. It is 3,4-dinitro-1H-pyrazole-5-carboxylic acid monohydrate (L1) [27]. L and L1 differ in the substituent at position C4, Br in L and NO2 in L1. Like in the L, N–H··O, O–H··N and O–H··O interactions, play essential roles in the assembly of molecules in the solid state of L1. In both L1 and L2 the substituent at C4 is not involved in the assembly of molecules.


Corresponding author: Željko K. Jaćimović, Faculty of Metallurgy and Technology, Džordža Vašingtona, University of Montenegro, Podgorica, Montenegro, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Apex2, Saint and Sadabs. Bruker AXS Inc., Madison, Wisconsin, USA, 2009.Suche in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2014, C71, 3–8, https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

3. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., van der Streek, T., van de Streek, J. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2020, 39, 453–457; https://doi.org/10.1107/s002188980600731x.Suche in Google Scholar

4. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13; https://doi.org/10.1107/s0021889802022112.Suche in Google Scholar

5. Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838; https://doi.org/10.1107/s0021889899006020.Suche in Google Scholar

6. Farrugia, L. J. WinGX and ORTEP for windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

7. Alam, J., Alam, O., Alam, P., Naim, M. J. A review on pyrazole chemical entity and biological activity. Int. J. Pharm. Sci. Res. 2015, 6, 1433–1442.Suche in Google Scholar

8. Zou, R.-Q., Liu, C.-S., Shi, X.-S., Buab, X.-H., Ribas, J. Tuning the topologies of MnII complexes with 3-(2-pyridyl)pyrazole and carboxylate ligands by intramolecular hydrogen bonds and the geometries of pendant ligands: crystal structures and magnetic properties. CrystEngComm 2005, 7, 722–727; https://doi.org/10.1039/b513269j.Suche in Google Scholar

9. Attayibat, A., Radi, S., Lekchiri, Y., Ramdani, A., Hacht, B., Bacquet, M., Willai, S., Morcellet, M. New functionalised C,C bipyrazoles. Synthesis and cation binding properties. J. Chem. Res. 2006, 10, 655–657; https://doi.org/10.3184/030823406779173587.Suche in Google Scholar

10. Pettinari, C., Tabacaru, A., Galli, S. Coordination polymers and metal-organic frameworks based on poly(pyrazole)-containing ligands. Coord. Chem. Rev. 2016, 307, 1–31; https://doi.org/10.1016/j.ccr.2015.08.005.Suche in Google Scholar

11. Pérez, J., Riera, L. Pyrazole complexes and supramolecular chemistry. Eur. J. Inorg. Chem. 2009, 2009, 4913–4925; https://doi.org/10.1002/ejic.200900694.Suche in Google Scholar

12. Infantes, L., Motherwell, S. Prediction of H-bonding motifs for pyrazoles and oximes using the Cambridge structural database. Struct. Chem. 2004, 15, 173–184; https://doi.org/10.1023/b:stuc.0000021525.74750.fa.10.1023/B:STUC.0000021525.74750.faSuche in Google Scholar

13. Foces-Foces, C. N., Alkorta, I., Elguero, J. Supramolecular structure of 1H-pyrazoles in the solid state: a crystallographic and ab initio study. Acta Crystallogr., Sect. B: Struct. Sci. 2000, 56, 1018–1028; https://doi.org/10.1107/s0108768100008752.Suche in Google Scholar PubMed

14. Padilla-Martinez, I. I., Flores-Larios, I. Y., García Baez, E., Gonzalez, J., Cruz, A., Martinez-Martinez, F. J. X-Ray supramolecular structure, NMR spectroscopy and synthesis of 3-methyl-1-phenyl-1H-chromeno[4,3-c] pyrazol-4-ones formed by the unexpectedcCyclization of 3-[1-(phenylhydrazono)ethyl]-chromen-2-ones. Molecules 2011, 16, 915–932; https://doi.org/10.3390/molecules16010915.Suche in Google Scholar PubMed PubMed Central

15. Durka, K., Lulinski, S., Jarzembska, K. N., Smetek, J., Serwatowskia, J., Wozniak, K. Competition between hydrogen and halogen bonding in the structures of 5,10-dihydroxy-5,10- dihydroboranthrenes. Acta Cryst 2014, B70, 157–171; https://doi.org/10.1107/s2052520613034987.Suche in Google Scholar PubMed

16. Jaćimović, Ž. K., Leovac, V. M., Tomić, Z. D. Crystal structure of hexakis(μ2-chloro)-κ4-oxo-tetrakis((3,5-dimethylpyrazole)copper(II)) ethanol tetrasolvate, Cu4OCl6(C5H8N2)4⋯4C2H5OH. Z. Kristallogr. NCS 2007, 222, 246–248; https://doi.org/10.1524/ncrs.2007.0103.Suche in Google Scholar

17. Jaćimović, Ž. K., Kosović, M., Novaković, S. B., Bogdanović, G. A., Giester, G., Kastratović, V. Crystal structure of 4-bromo-2-(1H-pyrazol-3-yl) phenol, C9H7BrN2O. Z. Kristallogr. NCS 2017, 232, 507–509; https://doi.org/10.1515/ncrs-2016-0392.Suche in Google Scholar

18. Jaćimović, Ž. K., Novaković, S. B., Bogdanović, G. A., Kosović, M., Libowitzky, E., Giester, G. Crystal structure of ethyl 3-(trifluoromethyl)-1H-pyrazole-4-carboxylate, C7H7F3N2O2. Z. Kristallogr. NCS 2020, 235, 1189–1190; https://doi.org/10.1515/ncrs-2020-0242.Suche in Google Scholar

19. Jaćimović, Ž. K., Tomić, Z. D., Giester, G., Libowitzky, E., Ajanović’, A., Kosović’, M. The crystal structure of bis [4-bromo-2-(1H-pyrazol-3-yl)phenolato]-κ2N,O]copper(II), C18H12Br2CuN4O2. Z. Kristallogr. - N. Cryst. Struct. 2021, 236, 1003–1005; https://doi.org/10.1515/ncrs-2021-0191,Suche in Google Scholar

20. Dunitz, J. D., Gavezzotti, A. Supramolecular synthons: validation and ranking of intermolecular interaction energies. Cryst. Growth Des. 2012, 12, 5873–5877; https://doi.org/10.1021/cg301293r.Suche in Google Scholar

21. Llamas-Saiz, A. L., Foces-Foces, C., Cano, F. H., Jiménez, P., Laynez, J., Meutermans, W., Elguero, J., Limbach, H. H., Aguilar-Parrilla, F. The influence of the nitro group on the solid-state structure of 4-nitropyrazoles: the cases of pyrazole, 3,5-dimethylpyrazole, 3,5-di-tert-butylpyrazole and 3,5-diphenylpyrazole. I. Static aspects (crystallography and thermodynamics). Acta Cryst 1994, B50, 746–762; https://doi.org/10.1107/s0108768194004180.Suche in Google Scholar

22. Lieberman, H. F., Davey, R. J., Newsham, D. M. T. Br⋯Br and Br⋯H interactions in action: polymorphism, hopping, and twinning in 1,2,4,5-tetrabromobenzene. Chem. Mater. 2000, 12, 490–494, https://doi.org/10.1021/cm991123p.Suche in Google Scholar

23. Desiraju, G. R., Parthasarathy, R. The nature of halogen-halogen interactions: are short halogen contacts due to specific attractive forces or due to close packing of nonspherical atoms. J. Am. Chem. Soc. 1989, 111, 8725–8726; https://doi.org/10.1021/ja00205a027.Suche in Google Scholar

24. Pejić, M., Popp, S., Bolte, M., Wagner, M., Lerner, H.-W. Functionalized pyrazoles as agents in C–C cross-coupling reactions. Z. Naturforsch. 2014, 69b, 83–97; https://doi.org/10.5560/znb.2014-3224.Suche in Google Scholar

25. Llamas-Saiz, A. L., Foces-Foces, C., Fontenasb, C., Jagerovic, N., Elguerob, J. The search for proton mobility in solid pyrazoles: molecular and crystal structure of 3(5)-phenyl-4-bromo-5(3)-methylpyrazole. J. Mol. Struct. 1999, 484, 197–205; https://doi.org/10.1016/s0022-2860(98)00905-3.Suche in Google Scholar

26. Pedireddi, V. R., Reddy, D. S., Goud, S., Craig, D. C., Raeb, A. B., Desiraju, G. R. The nature of halogen. Halogen interactions and the crystal structure of 1,3,5,7-tetraiodoadamantane. J. Chem. Soc., Perkin Trans. 1994, 2, 2353–2360; https://doi.org/10.1039/p29940002353.Suche in Google Scholar

27. Yan, T., Cheng, G., Yang, H. 1,3,4-Oxadiazole based thermostable energetic materials: synthesis and structure-property relationship. New J. Chem. 2020, 44, 6643–6651; https://doi.org/10.1039/d0nj00518e.Suche in Google Scholar

Received: 2023-04-24
Accepted: 2023-06-14
Published Online: 2023-07-05
Published in Print: 2023-10-26

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (N-([1,1′:4′,1″-terphenyl]-4,4′-diethyl)-2-(bis(pyridin-2-ylmethyl)amino)acetamide-κ4N,N,N″, O)tri(nitrato-kO, O′) samarium(III) - methanol - acetonitrile (1/1/1), C40H39SmN8O14
  4. The crystal structure of 6,6′-(((2-(dimethylamino)ethyl)azanediyl)bis(methylene))bis(2-chloro-4-methyl phenolate-κ4N,N,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)-titanium(IV), C27H27Cl2N3O6Ti
  5. N′-[(1E)-(4–Fluorophenyl)methylidene]adamantane-1-carbohydrazide, C18H21FN2O
  6. Crystal structure of 4-bromo-3-nitro-1H-pyrazole-5-carboxylic acid monohydrate, C4H2N3BrO4·H2O
  7. Crystal structure of dipyridine-k1N-tris(2,2,6,6-tetramethyl-5-oxohept-3-en-3-olato-k2O,O′)dysprosium(III), DyC43H67O6N2
  8. Crystal structure of cyclo[tetraiodido-bis{μ2-1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-isopropyl-imidazol)-k2N:N}dicadmiun(II)], C26H30N10Cd2I4
  9. The crystal structure of tert-butyl (E)-3-(2-(benzylideneamino)phenyl)-1H-indole-1-carboxylate, C26H24N2O2
  10. The crystal structure of 4-(3-carboxy-1-cyclopropyl-6-fluoro-8-methoxy-4-oxo-1,4- dihydroquinolin-7-yl)-2-methylpiperazin-1-ium 2,5-dihydroxybenzoate methanol solvate, C27H32FN3O9
  11. Crystal structure of (μ2-1-(4,4′-bipyridine-κ2N:N′)-bis[diaqua-(4-iodopyridine-2,6-dicarboxylato-κ3O,N,O′)–cobalt(II)], C24H20Co2I2N4O12
  12. The crystal structure of dimethyl 4,4′-(10,20-diphenylporphyrin-5,15-diyl)dibenzoate dichloromethane solvate, C49H36N4O4Cl2
  13. (E)-2-((E)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-en-2-ylidene)hydrazine-1-carbothioamide C14H23N3S1
  14. The crystal structure of [1-(4-(trifluoromethyl)phenyl)-3,4-dihydroquinolin-2(1H)-one], C16H12F3NO
  15. Crystal structure of (E)-2-amino-N′-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)methylene)benzohydrazide – dimethylformamide – water (1/1/2), C15H16N4O3·C3H7NO·2H2O
  16. Crystal structure of 3-(4-bromophenyl)-5-methyl-1H-pyrazole, C10H9BrN2
  17. Crystal structure of 1,10-phenanthrolinium bromide dihydrate, C12H9N2Br
  18. Crystal structure of N-(4′-chloro-[1,1′-biphenyl]-2-yl)formamide, C13H10ClNO
  19. The crystal structure of nitroterephthalic acid, C8H5NO6
  20. Crystal structure of (2-((4-bromo-2,6-dichlorophenyl)amino)phenyl) (morpholino)methanone, C17H15BrCl2N2O2
  21. Crystal structure of tetraaqua-bis(ethanol-κO)-tetrakis(μ2-trifluoroacetate-κ2O:O′)-bis(trifluoroacetate-κ2O)digadolinium(III) Gd2C16H20O18F18
  22. The crystal structure of dimethyl 4,4′-[10,20-bis(2,6-difluorophenyl)porphyrin-5,15-diyl]dibenzoate chloroform solvate, C50H32Cl6F4N4O4
  23. The crystal structure of N,N′-((nitroazanediyl)bis(methylene))diacetamide, C6H12O4N4
  24. The crystal structure of [bis(2,2′-bipyridine-6-carboxylato-κ3N,N,O)magnesium(II)]dihydrate, C22H18N4O6Mg
  25. Crystal structure of poly[diaqua-(bis(μ2-1,4-bis(imidazol-1-ylmethyl)benzene)-κ2N,N′] cobalt(II)-tetraqua-bis(1,4-bis(imidazol-1-ylmethyl)benzene)-κ1N)-cobalt(II) di(2,5-thiophenedicarboxylate) dihydrate, C68H76Co2N16O16S2
  26. Crystal structure of poly[chlorido-μ2-chlorido-(μ2-1-[(2-ethyl-4-methyl-1H-imidazol-1-yl)methyl]-1H-benzotriazole-κN:N’)cadmium(II)], C13H15CdN5Cl2
  27. The crystal structure of (4-hydroxybenzenesulfonate)-k1O-6,6′-((1E,1′E)- (ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene)) bis(2-methoxyphenol)-κ2N,N,μ2O,O2O, O)-(methanol)-cobalt(II) sodium(I), C25H27CoN2NaO9S
  28. Crystal structure of (1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)(4-((2-methyl-6-(trifluoromethyl)pyrimidin-4-yl)amino)piperidin-1-yl)methanone, C17H18F6N6O
  29. Crystal structure of bis{[(cyclohexylimino)(phenylimino)-l5-(methyl)diethylazane-κ2N:N′]-(ethyl)-zinc(II)]}, C38H62N6Zn2
  30. Crystal structure of 2-[(4-bromobenzyl)thio]-5-(5-bromothiophen-2-yl)-1,3,4-oxadiazole, C13H8Br2N2OS2
  31. Crystal structure of 10-methoxy-7,11b,12,13-tetrahydro-6H-pyrazino [2′,3′:5,6]pyrazino[2,1-a]isoquinoline, C15H16N4O
  32. The crystal structure of 1-propyl-2-nitro-imidazole oxide, C6H9N3O3
  33. The crystal structure of 3-nitrobenzene-1,2-dicarboxylic acid–2-ethoxybenzamide (1/1), C17H16N2O8
  34. The structure of RUB-1, (C8H16N)6[B6Si48O108], a boron containing levyne-type zeolite, occluding N-methyl-quinuclidinium in the cage-like pores
  35. The crystal structure of diaqua-(naphthalene-4,5-dicarboxylate-1,8-dicarboxylic anhydride1O)-(4′-(4-(1H-benzimidazolyl-1-yl)phenyl)-2,2′:6′,2″-terpyridine-κ3N,N′,N″)–manganese(II) dihydrate, C42H27MnN5O9·2H2O
  36. Crystal structure of 6,6′-((1E,1′E)-hydrazine-1,2-diylidenebis(methanylylidene))bis (3-(3-bromopropoxy)phenol), C20H22Br2N2O4
  37. The crystal structure of 3-(2-hydroxyphenyl)-4-phenyl-6-(p-tolyl)-2H-pyran-2-one, C24H18O3
  38. Crystal structure of bis(μ2-2-(1,5-dimethyl–3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato-κ4O:O,N,O′)-(nitrato-κ2O,O′)dicobalt(II), C36H32Co2N8O4
  39. Synthesis and crystal structure of (3E,5S,10S,13S,14S,17Z)-17-ethylidene-10,13-dimethylhexadecahydro-3H-cyclopenta[α] phenanthren-3-one O-(4-fluorobenzoyl) oxime, C28H36FNO2
  40. The crystal structure of 4-aminiumbiphenyl benzenesulfonate, C18H17NO3S
  41. Synthesis and crystal structure of 1-(7-hydroxy-3-(4-hydroxy-3-nitrophenyl)-4-oxo-4H-chromen-8-yl)-N,N-dimethylmethanaminiumnitrate, C18H17N3O9
  42. Crystal structure of N-(Ar)-N′-(Ar′)-formamidine, C14H12Br2N2O
  43. The crystal structure of 4-(2,4-dichlorophenyl)-2-(4-fluorophenyl)-5-methyl-1H-imidazole, C16H11Cl2FN2
  44. Crystal structure of 1-(4–chlorophenyl)-4-benzoyl-3-methyl-1H-pyrazol-5-ol, C17H13ClN2O2
  45. The crystal structure of 5-amino-1-methyl-4-nitroimidazole, C4H6O2N4
  46. Crystal structure of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene-N,N′-bis(1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-1,3,2-diazaborol-2-yl)-l2-germenediamine, C63H94B2GeN8
  47. The crystal structure of (bromido, chlorido)-tricarbonyl-(5,5′-dimethyl-2,2′-bipyridine)-rhenium(I), C15H12Br0.2Cl0.8N2O3Re1
  48. Crystal structure of [N(E),N′(E)]-N,N′-(1,4-phenylenedimethylidyne)bis-3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C26H36N6
  49. The crystal structure of poly[2-(4-carboxypyridin-3-yl)terephthalpoly[diaqua-(μ4-2-(6-carboxylatopyridin-3-yl)terephthalato-κ5O,N:O′:O″,O‴)]) cadmium(II)] dihydrate, C28H20Cd3N2O16
  50. Crystal structure of [tetraaqua-bis((3-carboxy-5-(pyridin-4-yl)benzoate-κ1N)cobalt(II)] tetrahydrate, C26H32CoN2O16
  51. Crystal structure of bis(μ2-azido-κ2N:N)-tetrakis(azido-κ1N)-tetrakis(1,10-phenanthroline-κ2N,N′)dibismuth(III), C48H32N26Bi2
  52. Crystal structure of (Z)-N-(4-(4-(4-((4,5,6-trimethoxy-3-oxobenzofuran-2(3H)-ylidene)methyl)phenoxy)butoxy)phenyl)acetamide, C30H31NO8
  53. Crystal structure of poly[diaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-bis(μ2-5-carboxybenzene-1,3-dicarboxylato-O,O′:O″)-aqua-di-zinc dihydrate solvate], C27H28N4O16Zn2
  54. Crystal structure of 2-(3,5,5-trimethylcyclohex-2-en-1-ylidene)malononitrile, C12H14N2
  55. Crystal structure of chlorido-(5-nitro-2-phenylpyridine-κ2N,C)-[(methylsulfinyl)methane-κ1S]platinum(II), C13H13ClN2O3PtS
  56. The crystal structure of the co-crystal 1,4-dioxane–4,6-bis(nitroimino)-1,3,5-triazinan-2-one(2/1), C11H19N7O9
  57. Crystal structure of [N(E),N′(E)]-N,N′-(1,4-phenylenedimethylidyne)bis-3,5-dimethyl-1H-pyrazol-4-amine di-methanol solvate, C18H20N6·2(CH3OH)
  58. Crystal structure of catena-poly[bis(μ2-azido-k2N:N′)-(nitrato-K2N:N′)-bis(1,10-phenanthroline-K2N:N′)samarium(III)], C24H16N11O3Sm
  59. Crystal structure of (Z)-2-(4-((5-bromopentyl)oxy)benzylidene)-4,5,6-trimethoxybenzofuran-3(2H)-one, C23H25BrO6
  60. Crystal structure of bis(3,5-dimethyl-1H-pyrazol-4-ammonium) tetrafluoroterephthate, 2[C5H10N3][C8F4O4]
  61. Crystal structure of 2-amino-4-(2-fluoro-4-(trifluoromethyl)phenyl)-9-methoxy-1,4,5,6-tetrahydrobenzo[h]quinazolin-3-ium chloride, C20H18ClF4N3O
  62. Crystal structure of 6-(pyridin-3-yl)-1,3,5-triazine-2,4-diamine-sebacic acid (2/1), C13H17N6O2
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0199/html?srsltid=AfmBOooEam-_7VScAeep7jGPE0NqvF0q2Odzc-XNTrVhefsS4H2qN-6Y
Button zum nach oben scrollen