Home Physical Sciences Crystal structure of N-(Ar)-N′-(Ar′)-formamidine, C14H12Br2N2O
Article Open Access

Crystal structure of N-(Ar)-N′-(Ar′)-formamidine, C14H12Br2N2O

  • Wisdom A. Munzeiwa , Sizwe J. Zamisa ORCID logo EMAIL logo and Bernard Omondi ORCID logo
Published/Copyright: August 3, 2023

Abstract

C14H12Br2N2O, triclinic, P 1 (no. 2), a = 7.3470(3) Å, b = 9.4435(4) Å, c = 10.4335(4) Å, α = 78.943(2)°, β = 85.455(2)°, γ = 86.384(2)°, V = 707.37(5) Å3, Z = 2, R gt (F) = 0.0313, wR ref (F2) = 0.0927, T = 100 K.

CCDC no.: 2282736

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Block
Size: 0.25 × 0.18 × 0.13 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 5.72 mm−1
Diffractometer, scan mode: Bruker SMART APEX2, φ and ω
θmax, completeness: 28.2°, 99 %
N(hkl)measured, N(hklunique, Rint: 14,526, 3366, 0.021
Criterion for Iobs, N(hklgt: Iobs > 2 σ(Iobs), 3205
N(param)refined: 173
Programs: Bruker [1], SHELX [2, 3], Mercury [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Br1 0.62979 (4) 0.58937 (3) 0.14342 (3) 0.01884 (10)
Br2 −0.03087 (5) 0.75066 (5) 0.41496 (3) 0.02838 (11)
O1 0.7836 (3) 0.6389 (2) 0.7006 (2) 0.0169 (4)
N1 0.4884 (4) 0.6800 (3) 0.5676 (3) 0.0141 (5)
H1 0.528934 0.589628 0.589997 0.017*
N2 0.3797 (4) 0.6281 (3) 0.3814 (3) 0.0143 (5)
C1 0.6724 (4) 0.7542 (3) 0.7226 (3) 0.0130 (5)
C2 0.7042 (4) 0.8457 (3) 0.8063 (3) 0.0165 (6)
H2 0.809322 0.829285 0.855552 0.020*
C3 0.5815 (5) 0.9625 (3) 0.8183 (3) 0.0185 (6)
H3 0.603059 1.025018 0.876152 0.022*
C4 0.4289 (5) 0.9872 (3) 0.7462 (3) 0.0186 (6)
H4 0.347664 1.068238 0.752611 0.022*
C5 0.3944 (4) 0.8931 (3) 0.6641 (3) 0.0166 (6)
H5 0.287308 0.908603 0.616931 0.020*
C6 0.5152 (4) 0.7768 (3) 0.6508 (3) 0.0127 (5)
C7 0.9501 (5) 0.6139 (4) 0.7660 (4) 0.0229 (7)
H7A 1.022599 0.699870 0.742170 0.034*
H7B 1.019910 0.531121 0.739597 0.034*
H7C 0.921597 0.593747 0.860880 0.034*
C8 0.4038 (4) 0.7190 (3) 0.4557 (3) 0.0130 (5)
H8 0.360410 0.816509 0.430506 0.016*
C9 0.2964 (4) 0.6845 (3) 0.2644 (3) 0.0128 (5)
C10 0.3884 (4) 0.6729 (3) 0.1440 (3) 0.0122 (5)
C11 0.3150 (4) 0.7244 (3) 0.0249 (3) 0.0151 (6)
H11 0.381521 0.712961 −0.054690 0.018*
C12 0.1423 (4) 0.7929 (4) 0.0239 (3) 0.0170 (6)
H12 0.092164 0.832814 −0.057181 0.020*
C13 0.0425 (4) 0.8037 (4) 0.1404 (3) 0.0187 (6)
H13 −0.076748 0.848824 0.139548 0.022*
C14 0.1190 (4) 0.7475 (3) 0.2587 (3) 0.0164 (6)

1 Source of material

The title compound was synthesised according to literature with slight modification [5]. Acetic acid (1.5 mmol) was added to a flask charged with the first aniline (2-methoxy aniline (2.5 g, 20 mmol, 1 equivalent)) and triethyl orthoformate (3.0 g, 20 mmol, 1 equivalent). The mixture was refluxed for 30 min with stirring to 140 °C. A distillation head was connected, and ethanol was distilled of until 60 mmol, (2 equivalents) were collected. The second aniline (2,6-dibromoaniline (3.2 g, 20 mmol, 1 equivalent)) was then added to the reaction mixture and heating continued until ethanol (1.75 ml, 30 mmol, 1 equivalent) was collected. Upon cooling to room temperature, the solution solidified. The crude product was triturated with cold hexane and collected by vacuum filtration. The solid was then dissolved in minimal hot acetone and recrystallized to remove traces of symmetric formamidine by-products. The crystals were collected by vacuum filtration and dried in vacuo, providing the title compound as a white solid. 4.3 g, yield 74 %. Mp. = 97 °C. 1 H NMR (CDCl3, 400 MHz): δ (ppm) 3.92 (s, O–CH3), 6.62 (t, H, Ar), 6.94 (q, 2H, Ar), 7.04 (t, H, Ar), 7.34 (d, 2H, Ar), 7.72 (s, 1H, CH=N), 8.08 (s, 2H, NH). 13 C NMR (CDCl3, 400 MHz): δ (ppm), 25.2, 25.6, 25.5, 27.8, 29.3, 123.1, 124, 129.8, 137.6, 144.5, 143.2, 145.4, 148.5. IR vv(cm−1): 3220 (N–H) stretching, 1620 (C=N). ESI–TOF MS (m/z): 406.92 [M + Na]+. Anal. calcd. for C14H12Br2N2O (%): C, 43.78; H, 3.15; N, 7.29. Found: C, 43.65; H, 3.17; N, 7.28.

2 Experimental details

The structure was solved by the Direct Methods using the SHELXS [2] program and refined. The visual crystal structure information was performed using Mercury [4] system software.

3 Comment

Formamidines have the signature –N=CH–N– linkage and have shown to be useful in the transition metal coordination chemistry. The neutral amidines and their amidino (amidinate) anions have shown to be versatile ligands in coordination [6]. These two nitrogens are sometimes called sp3 and sp2 nitrogens in the literature. The amine nitrogen, however, is only formally sp3, but sp2 like the other nitrogen. The only difference is that the double-bonded nitrogen has its lone pair in an sp2 orbital, while the single-bonded nitrogen has a lone pair in the p-orbital [7]. The amine can be further modified by alkylating, oxidising and thiolating [8]. Formamidines can flexibly transform into different isomeric forms, especially those that bore aryl-substituted moieties. The isomers are assigned using the E/Z- and syn/anti-nomenclature relative to the C=N and C–N bonds [5]. Furthermore, formamidines, have found wide spread applications as building blocks in metallo-polymers [9] paper bleaching agents [7] and catalysis [10].

The asymmetric unit of the title compound contains one molecule and it preferably adopts the E conformation. The C–N bonds length is between 1.290(5)–1.343(5) Å with the two N atoms at an angle of 122.2(1)° with respect to azomethine carbon. These values agree with literature values [812]. The torsional angles of the bromo and methoxy substituted phenyl rings planes is 48°. In the crystal packing of the title compound, intermolecular N1–H1⋯N2 hydrogen bonds (N1⋯N2 = 2.914(1) Å; N1–H1⋯N2 = 163°; symmetry code: 1 − x, 1 − y, 1 − z) form centrosymmetric dimers whilst Br2⋯O1 contacts (Br2⋯O1 = 3.192(2) Å; symmetry code: x − 1, y, z) link together neighbouring molecules to form a chain supramolecular structure that extends along the crystallographic a axis.


Corresponding author: Sizwe J. Zamisa, University of KwaZulu–Natal, School of Chemistry and Physics, Private Bag X54001 Westville Campus, Westville, 4000 Durban, South Africa, E-mail:

Acknowledgements

University of KwaZulu Natal (UKZN) and National research foundation (NRF) South Africa is appreciated for an enabling environment for the research and financial support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: NRF and UKZN URF.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEXII; Bruker AXS Inc: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez–Monge, L., Taylor, R., van de Streek, J., Wood, P. A. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Search in Google Scholar

5. Zamisa, S. J., Bongoza, U., Omondi, B. Predicting molecular isomerism of symmetrical and unsymmetrical N,N′-diphenyl formamidines in the solid-state: crystal structure, Hirshfeld surface analysis, pairwise interaction energy, and ΔHfusion and ΔSfusion correlations. CrystEngComm 2021, 23, 4459–4474; https://doi.org/10.1039/d1ce00458a.Search in Google Scholar

6. Camponovo, F. P. Chiral Ferrocenyl Amidines as modular ligands for Applications in Asymmetric Catalysis; Dissertation, ETH Zürich, 1980.Search in Google Scholar

7. Oszczapowicz, J., Raczyńska, E., Osek, J. Amidines. XVII—substituent-induced chemical shifts in 13C NMR spectra of N2-phenyl-formamidines, -acetamidines and -guanidines. Magn. Reson. Chem. 1986, 24, 9–14; https://doi.org/10.1002/mrc.1260240105.Search in Google Scholar

8. Oladipo, S. D., Omondi, B. N,N′–Diarylformamidine dithiocarbamate Ag(I) cluster and coordination polymer. Molbank 2022, 2022, M1327; https://doi.org/10.3390/m1327.Search in Google Scholar

9. Hsu, W., Yang, X. K., Chhetri, P. M., Chen, J. D. Hg(II) coordination polymers based on N,N′-bis(pyridine-4-yl)formamidine. Polymers 2016, 8, 137; https://doi.org/10.3390/polym8040137.Search in Google Scholar PubMed PubMed Central

10. Munzeiwa, W. A., Nyamori, V. O., Omondi, B. Zn(II) and Cu(II) unsymmetrical formamidine complexes as effective initiators for ring-opening polymerization of cyclic esters. Appl. Organomet. Chem. 2018, 32, e4247; https://doi.org/10.1002/aoc.4247.Search in Google Scholar

11. Cai, L., Han, Y., Ren, S., Huang, L. Dication C(R1)–N(R2)2 synthons and their use in the synthesis of formamidines, amidines, and α-aminonitriles. Tetrahedron 2000, 56, 8253–8262; https://doi.org/10.1016/s0040-4020(00)00785-7.Search in Google Scholar

12. Cotton, F. A., Lei, P., Murillo, C. A., Wang, L.-S. Synthesis of unsymmetrical formamidines and benzamidines: structural studies of copper, cobalt and chromium complexes. Inorg. Chim. Acta 2003, 349, 165–172; https://doi.org/10.1016/s0020-1693(03)00092-6.Search in Google Scholar

Received: 2023-06-22
Accepted: 2023-07-19
Published Online: 2023-08-03
Published in Print: 2023-10-26

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (N-([1,1′:4′,1″-terphenyl]-4,4′-diethyl)-2-(bis(pyridin-2-ylmethyl)amino)acetamide-κ4N,N,N″, O)tri(nitrato-kO, O′) samarium(III) - methanol - acetonitrile (1/1/1), C40H39SmN8O14
  4. The crystal structure of 6,6′-(((2-(dimethylamino)ethyl)azanediyl)bis(methylene))bis(2-chloro-4-methyl phenolate-κ4N,N,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)-titanium(IV), C27H27Cl2N3O6Ti
  5. N′-[(1E)-(4–Fluorophenyl)methylidene]adamantane-1-carbohydrazide, C18H21FN2O
  6. Crystal structure of 4-bromo-3-nitro-1H-pyrazole-5-carboxylic acid monohydrate, C4H2N3BrO4·H2O
  7. Crystal structure of dipyridine-k1N-tris(2,2,6,6-tetramethyl-5-oxohept-3-en-3-olato-k2O,O′)dysprosium(III), DyC43H67O6N2
  8. Crystal structure of cyclo[tetraiodido-bis{μ2-1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-isopropyl-imidazol)-k2N:N}dicadmiun(II)], C26H30N10Cd2I4
  9. The crystal structure of tert-butyl (E)-3-(2-(benzylideneamino)phenyl)-1H-indole-1-carboxylate, C26H24N2O2
  10. The crystal structure of 4-(3-carboxy-1-cyclopropyl-6-fluoro-8-methoxy-4-oxo-1,4- dihydroquinolin-7-yl)-2-methylpiperazin-1-ium 2,5-dihydroxybenzoate methanol solvate, C27H32FN3O9
  11. Crystal structure of (μ2-1-(4,4′-bipyridine-κ2N:N′)-bis[diaqua-(4-iodopyridine-2,6-dicarboxylato-κ3O,N,O′)–cobalt(II)], C24H20Co2I2N4O12
  12. The crystal structure of dimethyl 4,4′-(10,20-diphenylporphyrin-5,15-diyl)dibenzoate dichloromethane solvate, C49H36N4O4Cl2
  13. (E)-2-((E)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-en-2-ylidene)hydrazine-1-carbothioamide C14H23N3S1
  14. The crystal structure of [1-(4-(trifluoromethyl)phenyl)-3,4-dihydroquinolin-2(1H)-one], C16H12F3NO
  15. Crystal structure of (E)-2-amino-N′-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)methylene)benzohydrazide – dimethylformamide – water (1/1/2), C15H16N4O3·C3H7NO·2H2O
  16. Crystal structure of 3-(4-bromophenyl)-5-methyl-1H-pyrazole, C10H9BrN2
  17. Crystal structure of 1,10-phenanthrolinium bromide dihydrate, C12H9N2Br
  18. Crystal structure of N-(4′-chloro-[1,1′-biphenyl]-2-yl)formamide, C13H10ClNO
  19. The crystal structure of nitroterephthalic acid, C8H5NO6
  20. Crystal structure of (2-((4-bromo-2,6-dichlorophenyl)amino)phenyl) (morpholino)methanone, C17H15BrCl2N2O2
  21. Crystal structure of tetraaqua-bis(ethanol-κO)-tetrakis(μ2-trifluoroacetate-κ2O:O′)-bis(trifluoroacetate-κ2O)digadolinium(III) Gd2C16H20O18F18
  22. The crystal structure of dimethyl 4,4′-[10,20-bis(2,6-difluorophenyl)porphyrin-5,15-diyl]dibenzoate chloroform solvate, C50H32Cl6F4N4O4
  23. The crystal structure of N,N′-((nitroazanediyl)bis(methylene))diacetamide, C6H12O4N4
  24. The crystal structure of [bis(2,2′-bipyridine-6-carboxylato-κ3N,N,O)magnesium(II)]dihydrate, C22H18N4O6Mg
  25. Crystal structure of poly[diaqua-(bis(μ2-1,4-bis(imidazol-1-ylmethyl)benzene)-κ2N,N′] cobalt(II)-tetraqua-bis(1,4-bis(imidazol-1-ylmethyl)benzene)-κ1N)-cobalt(II) di(2,5-thiophenedicarboxylate) dihydrate, C68H76Co2N16O16S2
  26. Crystal structure of poly[chlorido-μ2-chlorido-(μ2-1-[(2-ethyl-4-methyl-1H-imidazol-1-yl)methyl]-1H-benzotriazole-κN:N’)cadmium(II)], C13H15CdN5Cl2
  27. The crystal structure of (4-hydroxybenzenesulfonate)-k1O-6,6′-((1E,1′E)- (ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene)) bis(2-methoxyphenol)-κ2N,N,μ2O,O2O, O)-(methanol)-cobalt(II) sodium(I), C25H27CoN2NaO9S
  28. Crystal structure of (1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)(4-((2-methyl-6-(trifluoromethyl)pyrimidin-4-yl)amino)piperidin-1-yl)methanone, C17H18F6N6O
  29. Crystal structure of bis{[(cyclohexylimino)(phenylimino)-l5-(methyl)diethylazane-κ2N:N′]-(ethyl)-zinc(II)]}, C38H62N6Zn2
  30. Crystal structure of 2-[(4-bromobenzyl)thio]-5-(5-bromothiophen-2-yl)-1,3,4-oxadiazole, C13H8Br2N2OS2
  31. Crystal structure of 10-methoxy-7,11b,12,13-tetrahydro-6H-pyrazino [2′,3′:5,6]pyrazino[2,1-a]isoquinoline, C15H16N4O
  32. The crystal structure of 1-propyl-2-nitro-imidazole oxide, C6H9N3O3
  33. The crystal structure of 3-nitrobenzene-1,2-dicarboxylic acid–2-ethoxybenzamide (1/1), C17H16N2O8
  34. The structure of RUB-1, (C8H16N)6[B6Si48O108], a boron containing levyne-type zeolite, occluding N-methyl-quinuclidinium in the cage-like pores
  35. The crystal structure of diaqua-(naphthalene-4,5-dicarboxylate-1,8-dicarboxylic anhydride1O)-(4′-(4-(1H-benzimidazolyl-1-yl)phenyl)-2,2′:6′,2″-terpyridine-κ3N,N′,N″)–manganese(II) dihydrate, C42H27MnN5O9·2H2O
  36. Crystal structure of 6,6′-((1E,1′E)-hydrazine-1,2-diylidenebis(methanylylidene))bis (3-(3-bromopropoxy)phenol), C20H22Br2N2O4
  37. The crystal structure of 3-(2-hydroxyphenyl)-4-phenyl-6-(p-tolyl)-2H-pyran-2-one, C24H18O3
  38. Crystal structure of bis(μ2-2-(1,5-dimethyl–3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato-κ4O:O,N,O′)-(nitrato-κ2O,O′)dicobalt(II), C36H32Co2N8O4
  39. Synthesis and crystal structure of (3E,5S,10S,13S,14S,17Z)-17-ethylidene-10,13-dimethylhexadecahydro-3H-cyclopenta[α] phenanthren-3-one O-(4-fluorobenzoyl) oxime, C28H36FNO2
  40. The crystal structure of 4-aminiumbiphenyl benzenesulfonate, C18H17NO3S
  41. Synthesis and crystal structure of 1-(7-hydroxy-3-(4-hydroxy-3-nitrophenyl)-4-oxo-4H-chromen-8-yl)-N,N-dimethylmethanaminiumnitrate, C18H17N3O9
  42. Crystal structure of N-(Ar)-N′-(Ar′)-formamidine, C14H12Br2N2O
  43. The crystal structure of 4-(2,4-dichlorophenyl)-2-(4-fluorophenyl)-5-methyl-1H-imidazole, C16H11Cl2FN2
  44. Crystal structure of 1-(4–chlorophenyl)-4-benzoyl-3-methyl-1H-pyrazol-5-ol, C17H13ClN2O2
  45. The crystal structure of 5-amino-1-methyl-4-nitroimidazole, C4H6O2N4
  46. Crystal structure of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene-N,N′-bis(1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-1,3,2-diazaborol-2-yl)-l2-germenediamine, C63H94B2GeN8
  47. The crystal structure of (bromido, chlorido)-tricarbonyl-(5,5′-dimethyl-2,2′-bipyridine)-rhenium(I), C15H12Br0.2Cl0.8N2O3Re1
  48. Crystal structure of [N(E),N′(E)]-N,N′-(1,4-phenylenedimethylidyne)bis-3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C26H36N6
  49. The crystal structure of poly[2-(4-carboxypyridin-3-yl)terephthalpoly[diaqua-(μ4-2-(6-carboxylatopyridin-3-yl)terephthalato-κ5O,N:O′:O″,O‴)]) cadmium(II)] dihydrate, C28H20Cd3N2O16
  50. Crystal structure of [tetraaqua-bis((3-carboxy-5-(pyridin-4-yl)benzoate-κ1N)cobalt(II)] tetrahydrate, C26H32CoN2O16
  51. Crystal structure of bis(μ2-azido-κ2N:N)-tetrakis(azido-κ1N)-tetrakis(1,10-phenanthroline-κ2N,N′)dibismuth(III), C48H32N26Bi2
  52. Crystal structure of (Z)-N-(4-(4-(4-((4,5,6-trimethoxy-3-oxobenzofuran-2(3H)-ylidene)methyl)phenoxy)butoxy)phenyl)acetamide, C30H31NO8
  53. Crystal structure of poly[diaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-bis(μ2-5-carboxybenzene-1,3-dicarboxylato-O,O′:O″)-aqua-di-zinc dihydrate solvate], C27H28N4O16Zn2
  54. Crystal structure of 2-(3,5,5-trimethylcyclohex-2-en-1-ylidene)malononitrile, C12H14N2
  55. Crystal structure of chlorido-(5-nitro-2-phenylpyridine-κ2N,C)-[(methylsulfinyl)methane-κ1S]platinum(II), C13H13ClN2O3PtS
  56. The crystal structure of the co-crystal 1,4-dioxane–4,6-bis(nitroimino)-1,3,5-triazinan-2-one(2/1), C11H19N7O9
  57. Crystal structure of [N(E),N′(E)]-N,N′-(1,4-phenylenedimethylidyne)bis-3,5-dimethyl-1H-pyrazol-4-amine di-methanol solvate, C18H20N6·2(CH3OH)
  58. Crystal structure of catena-poly[bis(μ2-azido-k2N:N′)-(nitrato-K2N:N′)-bis(1,10-phenanthroline-K2N:N′)samarium(III)], C24H16N11O3Sm
  59. Crystal structure of (Z)-2-(4-((5-bromopentyl)oxy)benzylidene)-4,5,6-trimethoxybenzofuran-3(2H)-one, C23H25BrO6
  60. Crystal structure of bis(3,5-dimethyl-1H-pyrazol-4-ammonium) tetrafluoroterephthate, 2[C5H10N3][C8F4O4]
  61. Crystal structure of 2-amino-4-(2-fluoro-4-(trifluoromethyl)phenyl)-9-methoxy-1,4,5,6-tetrahydrobenzo[h]quinazolin-3-ium chloride, C20H18ClF4N3O
  62. Crystal structure of 6-(pyridin-3-yl)-1,3,5-triazine-2,4-diamine-sebacic acid (2/1), C13H17N6O2
Downloaded on 20.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0295/html
Scroll to top button