Startseite Crystal structure of bis(μ2-2-(1,5-dimethyl–3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato-κ4O:O,N,O′)-(nitrato-κ2O,O′)dicobalt(II), C36H32Co2N8O4
Artikel Open Access

Crystal structure of bis(μ2-2-(1,5-dimethyl–3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato-κ4O:O,N,O′)-(nitrato-κ2O,O′)dicobalt(II), C36H32Co2N8O4

  • Jiaze Tian , Siyi Miao , Xin Wan , Jin Mou , Zhenchang Zhang , Qiang Tang EMAIL logo und Haixia Pang ORCID logo EMAIL logo
Veröffentlicht/Copyright: 15. August 2023

Abstract

C36H32Co2N8O4, monoclinic, P21/c (no. 14), a = 12.2971(12) Å, b = 13.1008(13) Å, c = 11.0864(11) Å, β = 99.174(2)°, V = 1763.2(3) Å3, Z = 2, Rgt(F) = 0.0277, wRref(F2) = 0.0818, T = 296 K.

CCDC no.: 914162

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.23 × 0.20 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.01 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 28.0°, >99 %
N(hkl)measured, N(hkl)unique, Rint: 13,853, 4251, 0.023
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3598
N(param)refined: 255
Programs: Bruker [1], SHELX [2, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Co1 0.62733 (2) 0.49420 (2) 0.03284 (2) 0.02769 (8)
N1 0.83352 (11) 0.60072 (11) 0.33622 (12) 0.0350 (3)
N2 0.83443 (12) 0.53740 (12) 0.43705 (12) 0.0370 (3)
N3 0.65348 (10) 0.41238 (9) 0.19570 (11) 0.0275 (3)
N4 0.73744 (14) 0.45552 (16) −0.14059 (15) 0.0521 (4)
O1 0.75400 (10) 0.59022 (9) 0.13030 (10) 0.0372 (3)
O2 0.49563 (9) 0.40153 (8) −0.02309 (10) 0.0317 (2)
O3 0.73572 (13) 0.39368 (13) −0.05481 (15) 0.0601(4)
O4 0.68012 (14) 0.53470 (13) −0.13715 (13) 0.0579 (4)
O5 0.79039 (17) 0.4399 (2) −0.22199 (17) 0.0957 (7)
C1 0.89906 (13) 0.69120 (13) 0.33974 (15) 0.0340 (3)
C2 0.87307 (17) 0.77547 (15) 0.4049 (2) 0.0497 (5)
H2 0.8113 0.7749 0.4436 0.060*
C3 0.9403 (2) 0.86040 (17) 0.4117 (2) 0.0630 (6)
H3 0.9245 0.9170 0.4564 0.076*
C4 1.0306 (2) 0.86166 (18) 0.3525 (2) 0.0640 (7)
H4 1.0760 0.9188 0.3584 0.077*
C5 1.05365 (17) 0.77921 (19) 0.2853 (2) 0.0596 (6)
H5 1.1137 0.7814 0.2438 0.072*
C6 0.98820 (15) 0.69218 (15) 0.27830 (18) 0.0439 (4)
H6 1.0042 0.6358 0.2332 0.053*
C7 0.76947 (13) 0.45554 (13) 0.40388 (14) 0.0320 (3)
C8 0.72797 (12) 0.46507 (12) 0.28135 (14) 0.0287 (3)
C9 0.77013 (12) 0.55635 (12) 0.23791 (14) 0.0294 (3)
C10 0.88853 (17) 0.56792 (17) 0.55778 (16) 0.0491 (5)
H10A 0.8437 0.6171 0.5912 0.074*
H10B 0.9588 0.5976 0.5518 0.074*
H10C 0.8988 0.5092 0.6101 0.074*
C11 0.75018 (19) 0.37489 (16) 0.49268 (17) 0.0504 (5)
H11A 0.7847 0.3126 0.4734 0.076*
H11B 0.6724 0.3639 0.4881 0.076*
H11C 0.7809 0.3961 0.5738 0.076*
C12 0.61221 (13) 0.32417 (12) 0.21450 (15) 0.0330 (3)
H12 0.6321 0.2952 0.2914 0.040*
C13 0.53746 (13) 0.26695 (11) 0.12531 (15) 0.0306 (3)
C14 0.51813 (15) 0.16504 (12) 0.15742 (17) 0.0387 (4)
H14 0.5485 0.1413 0.2345 0.046*
C15 0.45562 (15) 0.10017 (13) 0.07747 (19) 0.0442 (4)
H15 0.4446 0.0329 0.0996 0.053*
C16 0.40901 (16) 0.13617 (13) −0.03692 (19) 0.0448 (4)
H16 0.3681 0.0922 −0.0924 0.054*
C17 0.42278 (14) 0.23641 (13) −0.06917 (17) 0.0388 (4)
H17 0.3895 0.2594 −0.1455 0.047*
C18 0.48610 (12) 0.30439 (12) 0.01110 (14) 0.0299 (3)

1 Source of material

HL5 0.1540 g (0.5 mmol), Co(NO3)2·6H2O 0.7349 g (2.5 mmol), anhydrous methanol 9 mL, dichloromethane 0.5 mL, triethylamine 0.5 mL were placed in a reaction kettle, pH was adjusted to 7, shaken and sealed in an oven at 90 °C, and green needle crystals grew after seven days with a yield of 80.63 %.

2 Comment

In the field of scientific research, there is a significant increase in interest in the design of metal compounds as drugs and diagnostic agents [4]. Schiff base metal complexes are of wide interest for their use in optoelectronic materials, magnetic materials, analytical chemistry, and biology due to their specific properties [5], especially in medicine [6]. Among them, Co(II) Schiff bases have excellent DNA binding/cleavage, antibacterial, anticancer and antioxidant inhibitory properties that may help in developing innovative therapeutic strategies for the treatment of various diseases [7]. The 4-aminoantipyrine (Ampyrone) is an antipyrine derivative with an amino group at the C-4 position that has a large range of biological activities [8], and these derivatives have been used as ligands to develop multifunctional transition metal complexes with potential biological applications [9]. Based on some of our previously published Zn [10] and Co [11] metal complexes with 4-aminoantipyrine Schiff base ligands, we fitted 4-aminoantipyrine condensed o-hydroxybenzaldehyde (HL5) as a ligand and synthesized a novel reactivity and solubility of the reactants by using a solvothermal method in a sealed vessel by heating to produce an increase in self-pressure [12]. The synthesis of a new type of mononuclear Co(II) complex was carried out to lay some theoretical foundation for the study of the synthesis of metal complexes from 4-aminoantipyrine Schiff base ligands.

The title complex is a binuclear Co(II) coordination consisting of one compound. Each Co(II) center is coordinated by two salicylaldehyde oxygen atoms, imino nitrogen atoms and carbonyl oxygen atoms in the ligand HL5; plus the oxygen atoms of the nitrato ligand. The metal Co center adopts a distorted octahedral coordination configuration, and the ligand atoms come from two oxygen atoms in two HL5 ligand molecules, two oxygen atoms in one NO3, one nitrogen atom in imine and carbonyl oxygen atom in pyrazole ring in HL5 ligand molecule; one hydroxy oxygen atom in HL5 ligand molecule and carbonyl oxygen atom in pyrazole ring are in the cone of the distorted octahedron, respectively. The two oxygen atoms in one NO3 ion and the nitrogen atom in the imine of one HL5 ligand molecule and the hydroxyl oxygen atom in another HL5 ligand molecule are in the equatorial plane of the distorted octahedron; each HL5 ligand molecule is coordinated to two metal centers, forming a μ2-bridging mode, and NO3 is coordinated to the metal center in a bidentate coordination (O(4)–Co(1)–O(3) bond angle of 58.29(7)°), and this coordination mode is also more common in similar complexes.

The Co–O bond lengths are 2.0282(12) and 2.2064(16) Å and the Co–N bond length is 2.0806(13) Å. The two Co–N bonds are of equal length, similar to that reported in the literature at [13, 14]. Each two Co (II) atoms and two oxygen atoms form a Co2O2 parallelogram with a Co1–Co1a spacing of 3.104(4) Å, an O2–O2a spacing of 2.630(3) Å, an O2a–Co1–O2 bond angle of 80.55(4)°, and a Co1–O2–Co1a bond angle of 99.45(5)° (Symmetrical codes: #1 −x + 1, −y + 1, −z + 1); the rest of the bond lengths and bond angles are within the normal range.


Corresponding authors: Qiang Tang and Haixia Pang, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; and State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei, 430074, China, E-mail: ,

Funding source: Hubei Provincial Key Laboratory of Green Materials for Light Industry

Award Identifier / Grant number: 202307B11

Funding source: The National Student’s Platform for Innovation and Entrepreneurship Training Program of Hubei University of Technology

Award Identifier / Grant number: 20230100050

Funding source: State Key Laboratory of Geological Processes and Mineral Resources

Award Identifier / Grant number: GPMR202101

Funding source: China University of Geosciences, Wuhan, Hubei

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by Hubei Provincial Key Laboratory of Green Materials for Light Industry (No. 202307B11), the National Student’s Platform for Innovation and Entrepreneurship Training Program of Hubei University of Technology (No. 20230100050), State Key Laboratory of Geological Processes and Mineral Resources (GPMR202101), and China University of Geosciences, Wuhan, Hubei.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SMART and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2007.Suche in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

4. Thompson, K. H., Orvig, C. Metal complexes in medicinal chemistry: new vistas and challenges in drug design. J. Chem. Soc. Dalton Trans. 2006, 6, 761–764; https://doi.org/10.1039/b513476e.Suche in Google Scholar PubMed

5. Boulechfar, C., Ferkous, H., Delimi, A., Djedouani, A., Kahlouche, A., Boublia, A., Darwish, A. S., Lemaoui, T., Verma, R., Benguerba, Y. Schiff bases and their metal complexes: a review on the history, synthesis, and applications. Inorg. Chem. Commun. 2023, 150, 110451; https://doi.org/10.1016/j.inoche.2023.110451.Suche in Google Scholar

6. Raczuk, E., Dmochowska, B., Samaszko-Fiertek, J., Madaj, J. Different Schiff bases—structure, importance and classification. Molecules 2022, 27, 787; https://doi.org/10.3390/molecules27030787.Suche in Google Scholar PubMed PubMed Central

7. Alka, Gautam, S., Kumar, R., Singh, P., Gandhi, N., Jain, P. Pharmacological aspects of Co(II), Ni(II) and Cu(II) Schiff base complexes: an insight. Results Chem. 2023, 5, 100849; https://doi.org/10.1016/j.rechem.2023.100849.Suche in Google Scholar

8. Mohanram, I., Meshram, J. Synthesis and biological activities of 4-aminoantipyrine derivatives derived from Betti-type reaction. Int. Sch. Res. Notices 2014, 2014, 7; https://doi.org/10.1155/2014/639392.Suche in Google Scholar PubMed PubMed Central

9. Adithya Krishnan, M., Saranyaparvathi, S., Raksha, C., Vrinda, B., Geethu Girish, C., Kulkarni, N. V., Kharisov, B. I. Transition metal complexes of 4-aminoantipyrine derivatives and their antimicrobial applications. Russ. J. Coord. Chem. 2022, 48, 696–724; https://doi.org/10.1134/s1070328422110082.Suche in Google Scholar

10. Li, B., Huang, Y., Qian, W., Pang, H., Tang, Q. Crystal structure of catena-poly[diiodido-(μ2-1,5-dimethyl-2-phenyl-4-((pyridin-4-ylmethylene)amino)-1,2-dihydro-3H-pyrazol-3-one-κ2N:O)zinc(II)], C17H16I2N4OZn. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 5–7; https://doi.org/10.1515/ncrs-2022-0417.Suche in Google Scholar

11. Pang, H., He, X., Feng, X., Yuan, X. Crystal structure of diaqua-dichlorido-bis(μ2-2-(((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato-κ4O:O,N,O′)dicobalt(II), C36H36Cl2N6O6Co2. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 563–565; https://doi.org/10.1515/ncrs-2018-0560.Suche in Google Scholar

12. Huo, Y., Xiu, S., Meng, L.-Y., Quan, B. Solvothermal synthesis and applications of micro/nano carbons: a review. Chem. Eng. J. 2023, 451, 138572; https://doi.org/10.1016/j.cej.2022.138572.Suche in Google Scholar

13. Hong, C., Kun, Z., Guang-Xiang, L., Xiao-Ming, R. Hydrothermal synthesis, crystal structure and magnetic properties of a novel cobalt complex based on biphenyl-3,3′,4,4′-tetracarboxylate. Chin. J. Struct. Chem. 2010, 29, 347–352.Suche in Google Scholar

14. Zhou, W.-J., Ma, L.-X., Li, L.-Y., Wang, X., Li, B.-L., Li, H.-Y., Hu, C.-J. Photocatalytic properties of two Co(II) coordination polymers with tri(2-methylimidazole) and multicarboxylate. Polyhedron 2023, 234, 116328; https://doi.org/10.1016/j.poly.2023.116328.Suche in Google Scholar

Received: 2023-06-16
Accepted: 2023-07-27
Published Online: 2023-08-15
Published in Print: 2023-10-26

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (N-([1,1′:4′,1″-terphenyl]-4,4′-diethyl)-2-(bis(pyridin-2-ylmethyl)amino)acetamide-κ4N,N,N″, O)tri(nitrato-kO, O′) samarium(III) - methanol - acetonitrile (1/1/1), C40H39SmN8O14
  4. The crystal structure of 6,6′-(((2-(dimethylamino)ethyl)azanediyl)bis(methylene))bis(2-chloro-4-methyl phenolate-κ4N,N,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)-titanium(IV), C27H27Cl2N3O6Ti
  5. N′-[(1E)-(4–Fluorophenyl)methylidene]adamantane-1-carbohydrazide, C18H21FN2O
  6. Crystal structure of 4-bromo-3-nitro-1H-pyrazole-5-carboxylic acid monohydrate, C4H2N3BrO4·H2O
  7. Crystal structure of dipyridine-k1N-tris(2,2,6,6-tetramethyl-5-oxohept-3-en-3-olato-k2O,O′)dysprosium(III), DyC43H67O6N2
  8. Crystal structure of cyclo[tetraiodido-bis{μ2-1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-isopropyl-imidazol)-k2N:N}dicadmiun(II)], C26H30N10Cd2I4
  9. The crystal structure of tert-butyl (E)-3-(2-(benzylideneamino)phenyl)-1H-indole-1-carboxylate, C26H24N2O2
  10. The crystal structure of 4-(3-carboxy-1-cyclopropyl-6-fluoro-8-methoxy-4-oxo-1,4- dihydroquinolin-7-yl)-2-methylpiperazin-1-ium 2,5-dihydroxybenzoate methanol solvate, C27H32FN3O9
  11. Crystal structure of (μ2-1-(4,4′-bipyridine-κ2N:N′)-bis[diaqua-(4-iodopyridine-2,6-dicarboxylato-κ3O,N,O′)–cobalt(II)], C24H20Co2I2N4O12
  12. The crystal structure of dimethyl 4,4′-(10,20-diphenylporphyrin-5,15-diyl)dibenzoate dichloromethane solvate, C49H36N4O4Cl2
  13. (E)-2-((E)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-en-2-ylidene)hydrazine-1-carbothioamide C14H23N3S1
  14. The crystal structure of [1-(4-(trifluoromethyl)phenyl)-3,4-dihydroquinolin-2(1H)-one], C16H12F3NO
  15. Crystal structure of (E)-2-amino-N′-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)methylene)benzohydrazide – dimethylformamide – water (1/1/2), C15H16N4O3·C3H7NO·2H2O
  16. Crystal structure of 3-(4-bromophenyl)-5-methyl-1H-pyrazole, C10H9BrN2
  17. Crystal structure of 1,10-phenanthrolinium bromide dihydrate, C12H9N2Br
  18. Crystal structure of N-(4′-chloro-[1,1′-biphenyl]-2-yl)formamide, C13H10ClNO
  19. The crystal structure of nitroterephthalic acid, C8H5NO6
  20. Crystal structure of (2-((4-bromo-2,6-dichlorophenyl)amino)phenyl) (morpholino)methanone, C17H15BrCl2N2O2
  21. Crystal structure of tetraaqua-bis(ethanol-κO)-tetrakis(μ2-trifluoroacetate-κ2O:O′)-bis(trifluoroacetate-κ2O)digadolinium(III) Gd2C16H20O18F18
  22. The crystal structure of dimethyl 4,4′-[10,20-bis(2,6-difluorophenyl)porphyrin-5,15-diyl]dibenzoate chloroform solvate, C50H32Cl6F4N4O4
  23. The crystal structure of N,N′-((nitroazanediyl)bis(methylene))diacetamide, C6H12O4N4
  24. The crystal structure of [bis(2,2′-bipyridine-6-carboxylato-κ3N,N,O)magnesium(II)]dihydrate, C22H18N4O6Mg
  25. Crystal structure of poly[diaqua-(bis(μ2-1,4-bis(imidazol-1-ylmethyl)benzene)-κ2N,N′] cobalt(II)-tetraqua-bis(1,4-bis(imidazol-1-ylmethyl)benzene)-κ1N)-cobalt(II) di(2,5-thiophenedicarboxylate) dihydrate, C68H76Co2N16O16S2
  26. Crystal structure of poly[chlorido-μ2-chlorido-(μ2-1-[(2-ethyl-4-methyl-1H-imidazol-1-yl)methyl]-1H-benzotriazole-κN:N’)cadmium(II)], C13H15CdN5Cl2
  27. The crystal structure of (4-hydroxybenzenesulfonate)-k1O-6,6′-((1E,1′E)- (ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene)) bis(2-methoxyphenol)-κ2N,N,μ2O,O2O, O)-(methanol)-cobalt(II) sodium(I), C25H27CoN2NaO9S
  28. Crystal structure of (1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)(4-((2-methyl-6-(trifluoromethyl)pyrimidin-4-yl)amino)piperidin-1-yl)methanone, C17H18F6N6O
  29. Crystal structure of bis{[(cyclohexylimino)(phenylimino)-l5-(methyl)diethylazane-κ2N:N′]-(ethyl)-zinc(II)]}, C38H62N6Zn2
  30. Crystal structure of 2-[(4-bromobenzyl)thio]-5-(5-bromothiophen-2-yl)-1,3,4-oxadiazole, C13H8Br2N2OS2
  31. Crystal structure of 10-methoxy-7,11b,12,13-tetrahydro-6H-pyrazino [2′,3′:5,6]pyrazino[2,1-a]isoquinoline, C15H16N4O
  32. The crystal structure of 1-propyl-2-nitro-imidazole oxide, C6H9N3O3
  33. The crystal structure of 3-nitrobenzene-1,2-dicarboxylic acid–2-ethoxybenzamide (1/1), C17H16N2O8
  34. The structure of RUB-1, (C8H16N)6[B6Si48O108], a boron containing levyne-type zeolite, occluding N-methyl-quinuclidinium in the cage-like pores
  35. The crystal structure of diaqua-(naphthalene-4,5-dicarboxylate-1,8-dicarboxylic anhydride1O)-(4′-(4-(1H-benzimidazolyl-1-yl)phenyl)-2,2′:6′,2″-terpyridine-κ3N,N′,N″)–manganese(II) dihydrate, C42H27MnN5O9·2H2O
  36. Crystal structure of 6,6′-((1E,1′E)-hydrazine-1,2-diylidenebis(methanylylidene))bis (3-(3-bromopropoxy)phenol), C20H22Br2N2O4
  37. The crystal structure of 3-(2-hydroxyphenyl)-4-phenyl-6-(p-tolyl)-2H-pyran-2-one, C24H18O3
  38. Crystal structure of bis(μ2-2-(1,5-dimethyl–3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato-κ4O:O,N,O′)-(nitrato-κ2O,O′)dicobalt(II), C36H32Co2N8O4
  39. Synthesis and crystal structure of (3E,5S,10S,13S,14S,17Z)-17-ethylidene-10,13-dimethylhexadecahydro-3H-cyclopenta[α] phenanthren-3-one O-(4-fluorobenzoyl) oxime, C28H36FNO2
  40. The crystal structure of 4-aminiumbiphenyl benzenesulfonate, C18H17NO3S
  41. Synthesis and crystal structure of 1-(7-hydroxy-3-(4-hydroxy-3-nitrophenyl)-4-oxo-4H-chromen-8-yl)-N,N-dimethylmethanaminiumnitrate, C18H17N3O9
  42. Crystal structure of N-(Ar)-N′-(Ar′)-formamidine, C14H12Br2N2O
  43. The crystal structure of 4-(2,4-dichlorophenyl)-2-(4-fluorophenyl)-5-methyl-1H-imidazole, C16H11Cl2FN2
  44. Crystal structure of 1-(4–chlorophenyl)-4-benzoyl-3-methyl-1H-pyrazol-5-ol, C17H13ClN2O2
  45. The crystal structure of 5-amino-1-methyl-4-nitroimidazole, C4H6O2N4
  46. Crystal structure of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene-N,N′-bis(1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-1,3,2-diazaborol-2-yl)-l2-germenediamine, C63H94B2GeN8
  47. The crystal structure of (bromido, chlorido)-tricarbonyl-(5,5′-dimethyl-2,2′-bipyridine)-rhenium(I), C15H12Br0.2Cl0.8N2O3Re1
  48. Crystal structure of [N(E),N′(E)]-N,N′-(1,4-phenylenedimethylidyne)bis-3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C26H36N6
  49. The crystal structure of poly[2-(4-carboxypyridin-3-yl)terephthalpoly[diaqua-(μ4-2-(6-carboxylatopyridin-3-yl)terephthalato-κ5O,N:O′:O″,O‴)]) cadmium(II)] dihydrate, C28H20Cd3N2O16
  50. Crystal structure of [tetraaqua-bis((3-carboxy-5-(pyridin-4-yl)benzoate-κ1N)cobalt(II)] tetrahydrate, C26H32CoN2O16
  51. Crystal structure of bis(μ2-azido-κ2N:N)-tetrakis(azido-κ1N)-tetrakis(1,10-phenanthroline-κ2N,N′)dibismuth(III), C48H32N26Bi2
  52. Crystal structure of (Z)-N-(4-(4-(4-((4,5,6-trimethoxy-3-oxobenzofuran-2(3H)-ylidene)methyl)phenoxy)butoxy)phenyl)acetamide, C30H31NO8
  53. Crystal structure of poly[diaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-bis(μ2-5-carboxybenzene-1,3-dicarboxylato-O,O′:O″)-aqua-di-zinc dihydrate solvate], C27H28N4O16Zn2
  54. Crystal structure of 2-(3,5,5-trimethylcyclohex-2-en-1-ylidene)malononitrile, C12H14N2
  55. Crystal structure of chlorido-(5-nitro-2-phenylpyridine-κ2N,C)-[(methylsulfinyl)methane-κ1S]platinum(II), C13H13ClN2O3PtS
  56. The crystal structure of the co-crystal 1,4-dioxane–4,6-bis(nitroimino)-1,3,5-triazinan-2-one(2/1), C11H19N7O9
  57. Crystal structure of [N(E),N′(E)]-N,N′-(1,4-phenylenedimethylidyne)bis-3,5-dimethyl-1H-pyrazol-4-amine di-methanol solvate, C18H20N6·2(CH3OH)
  58. Crystal structure of catena-poly[bis(μ2-azido-k2N:N′)-(nitrato-K2N:N′)-bis(1,10-phenanthroline-K2N:N′)samarium(III)], C24H16N11O3Sm
  59. Crystal structure of (Z)-2-(4-((5-bromopentyl)oxy)benzylidene)-4,5,6-trimethoxybenzofuran-3(2H)-one, C23H25BrO6
  60. Crystal structure of bis(3,5-dimethyl-1H-pyrazol-4-ammonium) tetrafluoroterephthate, 2[C5H10N3][C8F4O4]
  61. Crystal structure of 2-amino-4-(2-fluoro-4-(trifluoromethyl)phenyl)-9-methoxy-1,4,5,6-tetrahydrobenzo[h]quinazolin-3-ium chloride, C20H18ClF4N3O
  62. Crystal structure of 6-(pyridin-3-yl)-1,3,5-triazine-2,4-diamine-sebacic acid (2/1), C13H17N6O2
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0286/html
Button zum nach oben scrollen