Home Structure and photochromism of 1,2-bis[2-methyl-5-(2-chlorophenyl)-3-thienyl]-3,3,4,4,5,5-hexafluorocyclopent-1-ene, C27H16Cl2F6S2
Article Open Access

Structure and photochromism of 1,2-bis[2-methyl-5-(2-chlorophenyl)-3-thienyl]-3,3,4,4,5,5-hexafluorocyclopent-1-ene, C27H16Cl2F6S2

  • Jingcheng Wang , Gang Liu , Congbin Fan EMAIL logo and Shouzhi Pu
Published/Copyright: March 31, 2017

Abstract

C27H16Cl2F6S2, triclinic, P1̅ (no. 2), a = 8.3612(18) Å, b = 11.8991(7) Å, c = 13.3979(7) Å, α = 94.667(3)°, β = 99.927(3)°, γ = 105.882(3)°, V = 1251.21(12) Å3, Z = 2, Rgt(F) = 0.0441, wRref(F2) = 0.1345, T = 100(2) K.

CCDC no.:: 1534853

The asymmetric unit of the title crystal structure is shown in the figure. The smaller component of the disordered groups are omitted for clarity. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Colourless block
Size:0.12 × 0.10 × 0.06 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:4.9 cm−1
Diffractometer, scan mode:Bruker SMART, φ and ω
2θmax, completeness:55.2°, >99%
N(hkl)measured, N(hkl)unique, Rint:21334, 5766, 0.020
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 5056
N(param)refined:381
Programs:SHELX [19], Bruker programs [20]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
F30.94621(16)0.42238(12)0.68682(10)0.0302(3)
F10.66362(18)0.27524(13)0.59259(10)0.0353(3)
F50.97290(15)0.55419(12)0.85262(10)0.0306(3)
F60.83904(16)0.40994(13)0.92427(9)0.0319(3)
F40.93077(16)0.28731(12)0.78785(10)0.0313(3)
F20.60254(16)0.20721(11)0.73129(11)0.0327(3)
S10.19182(6)0.44838(5)0.52368(4)0.02226(13)
S20.44459(6)0.67914(4)0.93354(4)0.02399(13)
C70.1542(2)0.30129(19)0.54138(15)0.0225(4)
C80.2915(2)0.28732(18)0.60626(15)0.0220(4)
H8A0.29810.21300.62460.026*
C90.4233(2)0.39467(18)0.64349(14)0.0200(4)
C100.3870(2)0.49101(18)0.60523(14)0.0205(4)
C110.4911(3)0.61764(19)0.62287(16)0.0247(4)
H11A0.59800.62700.67080.037*
H11B0.42810.66630.65150.037*
H11C0.51550.64270.55780.037*
C120.5828(2)0.40005(18)0.71145(14)0.0198(4)
C130.6707(3)0.30804(19)0.69248(15)0.0240(4)
C140.8548(3)0.36530(19)0.75072(15)0.0236(4)
C150.8381(2)0.45562(19)0.83443(15)0.0231(4)
C160.6716(2)0.47820(18)0.79449(14)0.0202(4)
C170.6198(2)0.57061(18)0.84796(14)0.0202(4)
C180.7224(3)0.69031(18)0.87545(15)0.0231(4)
H18A0.83380.71810.86270.028*
C190.6453(3)0.76098(19)0.92172(16)0.0246(4)
C200.4638(2)0.55070(18)0.87537(14)0.0202(4)
C210.3219(2)0.43918(18)0.86162(16)0.0238(4)
H21A0.35360.37490.82750.036*
H21B0.21970.44910.81970.036*
H21C0.29920.42030.92860.036*
C22a0.7036(8)0.8888(2)0.9640(4)0.0326(16)
C23a0.6745(8)0.9217(4)1.0596(4)0.061(2)
H23a0.61720.86351.09610.073*
C24a0.7291(7)1.0398(4)1.1018(4)0.078(2)
H24Aa0.70921.06231.16710.093*
C25a0.8129(6)1.1249(3)1.0484(4)0.057(2)
H25Aa0.85031.20561.07720.068*
C26a0.8421(6)1.0921(3)0.9528(4)0.058(2)
H26Aa0.89931.15030.91630.069*
C27a0.7874(7)0.9740(4)0.9106(3)0.0431(15)
Cl2a0.8232(4)0.94038(16)0.79068(13)0.0974(9)
C22Ab0.7162(8)0.8913(2)0.9453(4)0.0243(18)
C23Ab0.7022(6)0.9545(3)1.0337(3)0.0244(12)
C24Ab0.7693(6)1.0766(3)1.0508(3)0.0333(14)
H24b0.75971.11981.11110.040*
C25Ab0.8505(6)1.1354(2)0.9796(4)0.0370(16)
H25b0.89631.21880.99130.044*
C26Ab0.8645(6)1.0721(4)0.8912(4)0.0460(15)
H26b0.92001.11230.84260.055*
C27Ab0.7974(8)0.9501(4)0.8741(3)0.0356(16)
H27b0.80700.90680.81380.043*
Cl2Ab0.6132(2)0.88918(12)1.12859(10)0.0411(5)
Cl1c−0.06925(10)0.29879(7)0.32438(6)0.0411(2)
C1c−0.01318(17)0.20465(12)0.50305(12)0.0233(6)
C2c−0.1187(2)0.20023(14)0.40959(12)0.0292(6)
C3c−0.2715(2)0.11102(17)0.37950(12)0.0424(9)
H3c−0.34360.10800.31560.051*
C4c−0.31878(18)0.02623(15)0.44287(15)0.0399(8)
H4c−0.4232−0.03470.42230.048*
C5c−0.21327(19)0.03065(13)0.53634(13)0.0362(7)
H5c−0.2456−0.02730.57970.043*
C6c−0.06048(17)0.11986(13)0.56643(10)0.0290(6)
H6c0.01160.12290.63030.035*
Cl1Ad−0.0164(2)0.08661(18)0.63089(12)0.0431(11)
C1Ad−0.0054(10)0.2320(9)0.4823(8)0.0391(16)
C2Ad−0.0774(11)0.2628(7)0.3911(8)0.0391(16)
H2Ad−0.01930.33190.36640.047*
C3Ad−0.2344(11)0.1926(8)0.3360(6)0.0391(16)
H3Ad−0.28360.21370.27360.047*
C4Ad−0.3194(10)0.0915(8)0.3721(8)0.0391(16)
H4Ad−0.42670.04350.33440.047*
C5Ad−0.2474(12)0.0606(7)0.4633(8)0.0391(16)
H5Ad−0.3055−0.00850.48800.047*
C6Ad−0.0904(13)0.1308(9)0.5184(7)0.0391(16)
  1. aOccupancy: 0.553(2); bOccupancy: 0.447(2); cOccupancy: 0.816(2); dOccupancy: 0.184(2).

Source of material

The title compound was prepared according to the literature method [1] in 35.53% yield. The title compound was recrystallized from n-hexane at room temperature to obtain colorless crystals.

Experimental details

The hydrogen atoms were located by geometrically calculations, and their positions and thermal parameters were fixed during the structure refinement. The occupancies of the disordered carbon and chlorine atoms at the benzene rings in the molecular moiety are refined to a 0.553(2):0.447(2) ratio for C22 and C22A, C23 and C23A, C24 and C24A, C25 and C25A, C26 and C26A,C27 and C27A, Cl2 and Cl2A; a 0.816(2):0.184(2) ratio for C1 and C1A, C2 and C2A, C3 and C3A, C4 and C4A, C5 and C5A, C6 and C6A, Cl and ClA, respectively.

Discussion

Organic photochromic materials have received considerable attention because of their promising applications in the fields of optical memories and switches [2], [3], [4], full-color display [5, 6] , sensors [7, 8] , and much more. Among these photochromic compounds, diarylethenes are regarded as the best promising candidates for their reversible cyclization/cycloreversion photoreaction upon alternating irradiation with UV and visible light, which have remarkable thermal stability of the respective isomers [2], notable fatigue resistance [4], and high reactivity in the solid state [9]. Up to date, design and synthesis of new diarylethenes bearing different aryl moieties have become an active area of research [10], [11], [12], [13], [14]. The photochromic characteristics of diarylethenes strongly depend on the kind of the heteroaryl moieties and their substituents [15, 16] . Chloro substituents are important because they have some unique natures differing from other, such as resonance effect, inductive effect of the terminal benzene ring. Interestingly, the chloro substituent is working as an electron donor in the resonance effect, and it is electron-withdrawing in the inductive effect.

In the perfluorocyclopentene ring of the title structure, the two thiophenyl rings are linked by the C12 = C16 double bond (1.350(3) Å), which is shorter than the formal single bond (such as C12—C13, 1.505(3) Å and C16—C15, 1.506(3) Å. The dihedral angles between the perfluorocyclopentene ring and the two thiophene rings are 49.2° for S1/C7—C10 and 45.8° for S2/C17—C20. The two methyl groups are located on different sides of the C12 = C16 double bond and this configuration is crucial to allow the compound to exhibit photochromic and photoinduced properties [17]. The molecule adopts an antiparallel conformation, and the distance between the photoactive carbon atoms (C10—C20) is 3.542 Å. Based on the empirical rule, the crystal displayed a notable color change upon irradiation by UV light. The colorless crystal turned blue upon irradiation with 313 nm light. When the magenta crystals were dissolved in n-hexane, the hexane solution also showed a magenta color, with an absorption maximum at 560 nm, consistent with the presence of the closed-ring isomer. The magenta crystals could revert to a colorless state upon irradiation with visible light (larger than 500 nm), and the absorption spectrum of a n-hexane solution of such colorless crystals is the same as that of a solution of the open-ring form, with an absorption maximum at 315 nm. The photochromism was highly consistent in crystalline phase even after 100 repeat cycles, indicating that it is favorable for applications in a certain optoelectronic device [18]. The photoconversion ratios from the open- to closed-ring isomer were analysed by HPLC in hexane to be 62.6%.

Award Identifier / Grant number: 21363009

Funding statement: This work was supported by the National Natural Science Foundation of China (21363009), and the Program for the Top Young Innovative Talents in University (2013QNBJRC002). We thank the editor for providing the figure.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (21363009), and the Program for the Top Young Innovative Talents in University (2013QNBJRC002). We thank the editor for providing the figure.

References

1 Fan, C. B.; Pu, S. Z.; Liu, G.; Yang, T. S.: Substituent position effect on the properties of new unsymmetrical isomeric diarylethenes having a chlorine atom. J. Photochem. Photobio. A 197 (2008) 415–425.10.1016/j.jphotochem.2008.02.004Search in Google Scholar

2 Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S.: Photochromism of diarylethenes molecules and crystals: memories, switches, and actuators, Chem. Rev. 114 (2014) 112174–12277.10.1021/cr500249pSearch in Google Scholar PubMed

3 Yun, C.; You, J.; Kim, J.; Huh, J.; Kim, E.: Photochromic fluorescence switching from diarylethenes and its applications. J. Photochem. Photobio. C 10 (2009) 111–129.10.1016/j.jphotochemrev.2009.05.002Search in Google Scholar

4 Tian, H.; Yang, S. J.: Recent progresses on diarylethene based photochromic switches. Chem. Soc. Rev. 33 (2004) 85–97.10.1039/b302356gSearch in Google Scholar PubMed

5 Morimoto, M.; Kobatake, S.; Irie, M.: Multicolor photochromism of two- and three-component diarylethene crystals. J. Am. Chem. Soc. 125 (2003) 11080–11087.10.1021/ja035277oSearch in Google Scholar PubMed

6 Higashiguchi, K.; Matsuda, K.; Tanifuji, N.; Irie, M.: Full-color photochromism of a fused dithienylethene trimer. J. Am. Chem. Soc. 127 (2005) 8922–8923.10.1021/ja051467iSearch in Google Scholar PubMed

7 Zou, Q.; Li, X.; Zhang, J. J.; Zhou, J.; Sun, B. B.; Tian, H.: Unsymmetrical diarylethenes as molecular keypad locks with tunable photochromism and fluorescence via Cu2+ and CN coordinations. Chem. Commun. 48 (2012) 2095–2097.10.1039/c2cc16942hSearch in Google Scholar PubMed

8 Zhang, C. C.; Fan, C. B.; Pu, S. Z.; Liu, G.: A highly selective chemosensor for Cu2+ based on a diarylethene linking an aminoquinoline unit. Chin. J. Chem. 33 (2015) 1310–1316.10.1002/cjoc.201500578Search in Google Scholar

9 Kobatake, S.; Uchida, K.; Tsuchida, E.; Irie, M.: Single-crystalline photochromism of diarylethenes: reactivity-structure relationship. Chem. Commun. (2002) 2804–2805.10.1039/B208419HSearch in Google Scholar

10 Fan, C. B.; Duan, F.; Pu, S. Z.: Crystal structure and high contrast color-/fluorescent-switching properties of 1-[2-methyl-5-(4-chlorophenyl)-3-thienyl]-2-(2-methoxylphenyl)hexafluorocyclopentene. Chinese J. Struct. Chem. 34 (2015) 1675–1681.Search in Google Scholar

11 Mamiya, J.-I.; Kuriyama, A.; Yolota, N.; Yamada, M.; Ileda, T.: Photomobile polymer materials: photoresponsive behavior of cross-linked liquid-crystalline polymers with mesomorphic diarylethenes. Chem. Eur. J. 21 (2015) 3174–3177.10.1002/chem.201406299Search in Google Scholar PubMed

12 Cheng, H. N.; Hu, G. F.; Zhang, Z. H.; Gao, L.; Wu, H. C.: Photocontrolled reversible luminescent lanthanide molecular switch based on a diarylethene-europium dyad. Inorg. Chem. 55 (2016) 7962–7968.10.1021/acs.inorgchem.6b01009Search in Google Scholar PubMed

13 Jin, P. P.; Cao, F.; Luo, Q. F.: Multi-responsive diarylethene-phenolphthalein hybrids by multiple stimuli. Tetrahedron 72 (2016) 5488–5494.10.1016/j.tet.2016.07.038Search in Google Scholar

14 Ishibashi, Y.; Umesato, T.; Fujiwara, M.; Une, K.; Yoneda, Y.; Sotome, H.; Katayama, T.; Kobatake, S.; Asahi, T.; Irie, M.; Miyasaka, H.: Solvent polarity dependence of photochromic reactions of a diarylethene derivative as revealed by steadty-state and transient spectroscopies. J. Phys. Chem. 120 (2016) 1170–1177.10.1021/acs.jpcc.5b08504Search in Google Scholar

15 Wang, R. J.; Dong, X. R.; Pu, S. Z.; Liu, G.: Substituent effects on the properties of photochromic hybrid diarylethenes with a naphthalene moiety. Spectrochim. Acta. A 137 (2015) 1222–1230.10.1016/j.saa.2014.09.022Search in Google Scholar PubMed

16 Fan, C. B.; Fu, Y. L.; Pu, S. Z.: Crystal structure of photochromic 1-(2-methyl-5-phenyl-3-thienyl-2-[2-methyl-5-(4-ethoxylphenyl)-3-thienyl] 3,3,4,4,5,5-hexafluoro-cyclopent-1-ene, C29H22F6OS2. Z. Kristallogr.-NCS 231 (2016) 215–217.10.1515/ncrs-2015-0095Search in Google Scholar

17 Irie, M.: Diarylethenes for memories and switches. Chem. Rev. 100 (2000) 1685–1716.10.1021/cr980069dSearch in Google Scholar PubMed

18 Cheng, H. B.; Zhang, H. Y.; Liu, Y.: Dual-stimulus luminescent lanthanide molecular switch based on an unsymmetrical diarylperfluorocyclopentene. J. Am. Chem. Soc. 135 (2013) 10190–10193.10.1021/ja4018804Search in Google Scholar PubMed

19 Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A 64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

20 Bruker. APEX2, SAINT and SADABS. Brucker AXS Inc., Madison, Wisconsin, USA, 2009.Search in Google Scholar

Received: 2016-10-18
Accepted: 2017-2-28
Published Online: 2017-3-31
Published in Print: 2017-5-24

©2017 Jingcheng Wang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Articles in the same Issue

  1. Cover and Frontmatter
  2. Crystal structure of 2,5-diiodo-4-nitro-1H-imidazole hemihydrate, C6H4I4N6O5
  3. Crystal structure of catena-poly[μ2-2,2′-(1,3-phenylene)diacetato-κ4O,O′:O′′,O′′′)-(μ2-1,6-bis(2-methyl-1H-benzo[d]imidazol-1-yl)hexane-κ2N:N′)cadmium(II)], C32H34CdN4O4
  4. Crystal structure of poly[aqua-(2,2′-bipyridine-κN,N′)-(μ4-5,5′-(hexane-1,6-diyl)-bis(oxy)diisophthalato κ8O1,O2:O3,O4:O5,O6:O7,O8)manganese(II)], C21H21MnN2O7
  5. Crystal structure of poly-[(μ2-((1,3-bis(benzimidazol-1-yl)propane-κ2N:N′)(μ2-4-tert-butyl-phthalato-κ2O:O′)cobalt(II)] monohydrate, C29H30CoN4O5
  6. Crystal structure of 2-amino-4-(3,4,5-trimethoxy-phenyl)-5-(oxo-5,6,7,8-tetrahydro-4H-chromene)-3-carbonitrile – ethanol (1/1), C21H26N2O6
  7. Crystal structure of ethyl 1-benzyl-5-phenyl-1H-pyrazole-3-carboxylate, C19H18N2O2
  8. Crystal structure of 2-(1-benzyl-3-phenyl-1H-pyrazol-5-yl)-5-(4-nitrobenzylthio)-1,3,4-oxadiazole, C25H19N5O3S
  9. Structure and photochromism of 1,2-bis[2-methyl-5-(2-chlorophenyl)-3-thienyl]-3,3,4,4,5,5-hexafluorocyclopent-1-ene, C27H16Cl2F6S2
  10. The crystal structure of the Schiff base (E)-2,6-diisopropyl-N-(pyridin-4-ylmethylene)aniline, C18H22N2
  11. Crystal structure of (E)-2,4-dibromo-6-(((4-methyl-2-nitrophenyl)imino) methyl)phenol, C10H14Br2N2O3
  12. Crystal structure of (bis(2,2′-bipyridine-κ2N,N′))-(3,5-dinitrosalicylato-κ2O,O′)nickel(II), C27H18N6NiO7
  13. Crystal structure of 1-(diethoxy phosphonomethyl) 2-benzoyl-3-chloro-2-cyclohexen-1-ol, C18H24ClO5P
  14. Crystal structure of tetraaqua-bis(1,3-benzimidazol-3-ium-1,3-diacetato-κO)copper(II) hemihydrate, C22H27CuN4O12.50
  15. Crystal structure of 1α,11-dihydroxyeremophil-9-en-8-one, C15H24O3
  16. Crystal structure of 1-ferrocenylsulfonyl-1H-imidazo[4,5-b]pyridine, C16H13FeN3O2S
  17. Crystal structure of bis(μ2-azido-κ2N:N)-dichlorido-bis(μ2-2-(pyridin-2-yl)ethan-1-ol-κ2O,N)dicopper(II), C14H18Cl2Cu2N8O2
  18. Crystal structure of (5,15-cis-bis(2-hydroxy-1-naphthyl)-10-phenyl-20-(4-hydroxyphenyl)-porphyrinato)-(pyridine)-zinc(ii) pyridine solvate, C67H47N7O3Zn
  19. Crystal structure of (μ2-[2,2′-bis(diphenylphosphino)-1,1′-binaphthalene oxide-κ2O,P])-iodido copper(I), C44H32CuIOP2
  20. Crystal structure of 6,8-diphenyl-2-(4-fluorophenyl)-2,3-dihydroquinolin-4(3H)-one, C27H20FNO
  21. Crystal structure of 5,11,17,23-tetra(tert-butyl)-25,26,27,28-tetrahexoxycalix[4]arene, C68H104O4
  22. Crystal structure of N,N′–bis(pyridin-4-ylmethyl)pyrazine-2,3-dicarboxamide dihydrate, C18H20N6O4
  23. Crystal structure of a diaqua-bis(3,5-di(1H-imidazol-1-yl)pyridine-κN)-bis(2-(4-carboxy-phenyl)acetato-κO]manganese(II), C40H36MnN10O10
  24. Crystal structure of 4-(4-hydroxy-3-methoxy-phenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylic acid methyl ester, C21H25NO5
  25. Crystal structure of (E)-4,4′-(ethene-1,2-diyl)bis(3-nitrobenzoic acid) 1.5 hydrate, C16H13N2O9.5
  26. Crystal structure of (E)-2-(5-(4-fluorophenyl)-3-(furan-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)-5-((4-fluorophenyl)diazenyl)-4-methylthiazole, C23H17F2N5OS
  27. Crystal structure of the co-crystalline adduct 4-((4,4-dimethyl-2,6-dioxocyclohexylidene)methylamino)-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide - acetic acid (1/1), C21H24N4O4S ⋅ C2H4O2
  28. Synthesis and crystal structure of 2-((5-chlorobenzo[c][1,2,5]thiadiazol-4-yl)amino)-4,5-dihydro-1H-imidazol-3-ium tetraphenylborate, C33H29BClN5S
  29. Crystal structure of (4-chlorophenyl)(3-ferrocenyl-5-(trifluoromethyl)-1H-pyrazol-1-yl)methanone, C21H14ClF3FeN2O
  30. Crystal structure of (S)-benzyl 3-(benzylcarba-moyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate, C25H24N2O3
  31. Crystal structure of 5-acetyl-3-(3-fluoro-4-morpholinophenyl)oxazolidin-2-one, C15H17FN2O4
  32. Crystal structure of 2-(4-fluorophenyl)-1,3-dimethyl-1H-perimidin-3-ium iodide, C19H16FIN2
  33. Crystal structure of methyl 1H-indole-2-carboxylate, C10H9NO2
  34. Crystal structure of 2,3-diphenyl-1-[(dipropylamino)acetyl]-1,3-diazaspiro[4.5]decan-4-one, C28H37N3O2
  35. Crystal structure of 1-(2H-1,3-benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propan-1-one, C13H12N2O3
  36. Crystal structure of 2,9-dibromo-1,10-phenanthroline, C12H6Br2N2
  37. Crystal structure of 3-(adamantan-1-yl)-4-(4-fluorophenyl)-1H-1,2,4-triazole-5(4H)-thione, C18H20FN3S
  38. Crystal structure of trans-bis((E)-7-oxo-4-(phenyldiazenyl)cyclohepta-1,3,5-trien-1-olato)-κ2O,O′)-bis(pyridine-κN)cobalt(II), C36H28CoN6O4
  39. Crystal structure of 2-(4-methyl-3-phenylthiazol-2(3H)-ylidene)malononitrile, C13H9N3S
  40. Crystal structure of (Z)-3-(adamantan-1-yl)-1-(3-chlorophenyl)-S-benzylisothiourea, C24H27ClN2S
  41. Crystal structure of chlorido{[3-(η5-cyclopenta-dienyl)-2,2,3-trimethyl-1-phenylbutylidene] azanido-κN}[η2(N,O)-N,N-dimethylhydroxylaminato]titanium(IV), C20H27ClN2OTi
  42. Crystal Structure of 1,1′-dimethyl-[4,4′-bipyridine]-1,1′-diium tetrachloridozincate(II), C12H14Cl4N2Zn
  43. Crystal structure of 5-nitro-2-(pyrrolidin-1-yl)benzaldehyde, C11H12N2O3
  44. Crystal structure of 2,3-diphenyl-1-(morpholin-4-ylacetyl)-1,3-diazaspiro[4.5]decan-4-one, C26H31N3O3
  45. Crystal structure of 3,3-dimethyl-3,4-dihydro-1H-benzo[c]chromene-1,6(2H)-dione, C15H14O3
  46. Crystal structure of bis(2-(2-hydroxymethyl)pyridine-κ2N,O)-bis(pivalato-κO)nickel(II), C22H32N2NiO6
  47. Crystal structure of (1,10-phenanthroline-κ2N,N′)-bis(1H-pyrazole-3-carboxylato-κ2N,O)manganese(II) trihydrate, C20H20N6O7Mn
  48. The crystal structure of 3-aminopropan-1-aminium iodide, C3H11N2I
  49. Crystal structure of ethyl 1-(4-chlorophenyl)-5-methyl-1H-1,2,3-triazole-4 carboxylate, C12H12ClN3O2
  50. Crystal structure of 4,4′-((1Z,1′Z)-2,2′-(2,5-diethoxy-1,4-phenylene)bis(ethene-2,1-diyl))dipyridine, C24H24N2O2
  51. Crystal structure of (16S)-12,16-epoxy-11,14-dihydroxy-17(15/16)-abeo-3a,18-cyclo-8,11,13-abietatrien-7-one, C20H24O4
  52. Crystal structure of aquadichlorido(2,4,6-tri-2-pyridyl-1,3,5-triazine-κ3N,N′,N′′)nickel(II) monohydrate, C18H16Cl2N6NiO2
  53. Crystal structure of catena-poly[dichlorido-(μ-ethane-1,2-diyl-bis-(pyridyl-4-carboxylate-κN:N′)mercury(II)], C15H14Cl2HgN2O4
  54. Crystal structure of methyl 2-acetamido-5-chlorbenzoate, C10H10ClNO3
  55. Crystal structure of tetrakis(μ2-3,3-dimethylacrylato-κ2O,O′)-bis(2-aminopyrimidine-κN) dicopper(II), C28H38Cu2N6O8
  56. Crystal structure of 3-amino-8-methoxy-1-phenyl-1H-benzo[f]chromene-2-carbonitrile, C21H16N2O2
  57. Crystal structure of 4-(2-ammonioethyl)morpholin-4-ium dichloride monohydrate, C6H18Cl2N2O2
  58. Crystal structure of 1-(3-((5-bromo-2-hydroxybenzylidene)amino)phenyl)ethanone O-benzyl oxime, C22H19BrN2O2
  59. Crystal structure of 2-(4-(dimethylamino)-2-fluorophenyl)-1,3-bis(1H-1,2,4-triazol-1-yl)propan-2-ol monohydrate, C15H20FN7O2
  60. Crystal structure of 4-bromo-2-(1H-pyrazol-3-yl)phenol, C9H7BrN2O
  61. Crystal structure of 1,2,3,4,5-pentamethyl-1,3-cyclopentadiene, C10H16
Downloaded on 22.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2016-0264/html?lang=en
Scroll to top button