Home Crystal structure of trans-bis((E)-7-oxo-4-(phenyldiazenyl)cyclohepta-1,3,5-trien-1-olato)-κ2O,O′)-bis(pyridine-κN)cobalt(II), C36H28CoN6O4
Article Open Access

Crystal structure of trans-bis((E)-7-oxo-4-(phenyldiazenyl)cyclohepta-1,3,5-trien-1-olato)-κ2O,O′)-bis(pyridine-κN)cobalt(II), C36H28CoN6O4

  • Tania N. Hill EMAIL logo , Renier Koen and Andreas Roodt
Published/Copyright: April 1, 2017

Abstract

C36H28Co1N6O4, triclinic, P1̄ (no. 2), a = 6.3166(4) Å, b = 8.5454(5) Å, c = 14.8075(9) Å, α = 105.157(2)°, β = 94.494(3)°, γ = 101.890(2)°, V = 747.5(2) Å3, Z = 1, Rgt(F) = 0.0332, wRref(F2) = 0.0790, T = 100(2) K.

CCDC no.:: 1537730

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Red columnar
Size:0.34 × 0.10 × 0.08 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:6.3 cm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
2θmax, completeness:56.8°, >98%
N(hkl)measured, N(hkl)unique, Rint:10536, 3714, 0.0225
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3222
N(param)refined:214
Programs:Bruker programs [11], SIR92 [12], SHELX [13, 14] ,
WinGX [15], publCIF [16], PLATON [17]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.4184(2)0.24143(18)0.32614(10)0.0139(3)
C20.4405(3)0.10253(19)0.25390(11)0.0172(3)
H20.57550.07610.26030.021*
C30.2300(3)0.32071(18)0.32599(10)0.0148(3)
C40.0381(3)0.25923(19)0.25863(11)0.0186(3)
H4−0.06280.32520.26830.022*
C5−0.0268(3)0.12028(19)0.18166(11)0.0185(3)
H5−0.16580.10510.15000.022*
C60.0851(3)−0.00141(19)0.14405(10)0.0170(3)
C70.2986(3)−0.00094(19)0.17572(11)0.0185(3)
H70.3546−0.08380.13810.022*
C110.1193(3)0.34610(19)0.58620(11)0.0178(3)
H110.07950.44340.58260.021*
C12−0.0129(3)0.2394(2)0.62583(11)0.0209(3)
H12−0.13740.26570.64930.025*
C130.0431(3)0.0934(2)0.62988(11)0.0226(4)
H13−0.04280.01980.65630.027*
C140.2296(3)0.05830(19)0.59385(11)0.0212(3)
H140.2698−0.04010.59460.025*
C150.3546(3)0.17273(19)0.55673(10)0.0170(3)
H150.48070.14970.53340.020*
C31−0.3063(3)−0.30783(19)−0.03555(11)0.0187(3)
C32−0.1900(3)−0.4247(2)−0.07566(12)0.0228(3)
H32−0.0437−0.4099−0.05280.027*
C33−0.2936(3)−0.5624(2)−0.14954(12)0.0254(4)
H33−0.2167−0.6405−0.17630.030*
C34−0.5119(3)−0.5849(2)−0.18410(11)0.0257(4)
H34−0.5802−0.6775−0.23420.031*
C35−0.6273(3)−0.4706(2)−0.14437(12)0.0268(4)
H35−0.7735−0.4861−0.16750.032*
C36−0.5247(3)−0.3312(2)−0.06933(12)0.0236(4)
H36−0.6029−0.2543−0.04210.028*
N10.3022(2)0.31525(15)0.55284(9)0.0155(3)
N2−0.0128(2)−0.14182(16)0.06543(9)0.0187(3)
N3−0.2147(2)−0.16271(16)0.04200(9)0.0195(3)
O10.57008(17)0.30884(13)0.39636(7)0.0158(2)
O20.24615(18)0.45279(13)0.39276(7)0.0169(2)
Co10.50000.50000.50000.01385(9)

Source of material

The reagents available commercially were used without further purification. 5-(Phenyldiazenyl)tropolone was synthesized according to the previously published method [3]. 5-(Phenyldiazenyl)tropolone (452 mg, 2.0 mmol) and pyridine (162 μL, 2.0 mmol) were added to a solution of Co(CH3COO)2⋅4H2O (249 mg, 1.0 mmol) in EtOH:H2O (40 ml, 1:1). The solution was refluxed (110 °C) for 7 days, filtered and allowed to crystallize. Crystals were obtained from the slow evaporation of the solution at room temperature (81% yield) within 2 weeks.

Experimental details

Methyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C). The highest (0.39e Å−3) and lowest (−0.30e Å−3) residual electron density peaks were located respectively at 0.69 Å from the C1 and 0.58 Å from the Co1 atoms.

Discussion

Past investigations have highlighted the fact that the tropolone-type ligands (TropH) are very effective chelating agents and have a wide range of chemical applications [1], [2], [3], [4]. The complexation of these ligands to transition metal centres is however not a novel notion, with the tropolonato anion forming a five-membered chelating ring resulting in a smaller bite angle than that of the β-diketonato analogues [1, 5] . These ligands are ideally suited to the formation of structures with higher coordination numbers, which has been ascribed to the planarity and compactness of the ligand [6].

Tropolonato compounds have been noted to have useful chemical properties that can be exploited for a wide variety industrial purposes. Examples include the use of Rh(I) tropolonates in the asymmetric hydrosilation of acetophenone, the use of Th(IV) tropolonates for extraction of thorium from other rare earth elements and the Re(I) analogues for model radiopharmeceutical application [7], [8], [9].

In contrast, an in-depth literature study revealed limited examples of cobalt tropolonato complexes, with the only notable occurance highlighting the use of cobalt(III) bistropolonates ([Co(Trop)2(L)]+) as potential hypoxia-selective cytotoxins [10]. This observation regarding the limited solid-state crystallographic properties of cobalt(II) tropolonato compounds lead to the investigation of the crystal structure of [Co(ph-azotrop)2(py)2].

The asymmetric unit of the title crystal structure consists of half of the [Co(ph-azotrop)2(py)2] complex. The cobalt atom is located on an inversion centre and is coordinated to both phenyl-azotropolonato and pyridine with the other half of the molecule being generated by symmetry. The environment around the cobalt(II) metal centre has a distorted octahedral geometry with the pyridine ligands in the axial position. The Co—O distances are 2.063(1) Å and 2.077(1) Å respectively with a Co—N distance of 2.157(1) Å. The O—Co—O bite angle was determined to be 77.80(4)°. The molecules are held together by a head-to-tail π⋯π stacking interaction involving the phenyl-azotropolonato ligands, with a distance of 3.638 Å between best planes defined by the ligands. While free phenyl-azotropone [3] was found to be essentially planar, the cobalt(II) complex displays bending and twisting of the phenyl-azotropolonato back-bone. In the structure of the title compound an additional π⋯π interaction was observed between pyridine ligands with a distance of 2.617 Å, generating a three-dimensional supramolecular network.

Acknowledgement

Financial assistance from the University of the Free State is gratefully acknowledged. We also express our gratitude towards SASOL and the South African National Research Foundation (SA-NRF/THRIP) for financial support of this project. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the SA-NRF.

References

1 Steyl, G.; Roodt, A.: Molecular and crystallographic study of tropolone type derivatives by ab initio Hartree–Fock calculations. S. Afr. J. Chem. 59 (2006) 21–27.Search in Google Scholar

2 Muetteries, E. L.; Wright, C. M.: Chelate chemistry. III. Chelates of high coordination number. J. Am. Chem. Soc. 87 (1965) 4706–4717.10.1021/ja00949a009Search in Google Scholar

3 Hill, T. N.; Mangwaela, M. S.; Steyl, G.: 5-(Phenyldiazenyl)tropolone. Acta Crystallogr. E68 (2012) o941.10.1107/S1600536812008677Search in Google Scholar

4 Hill, T. N.; Steyl, G.: (3,5,7-Tribromotropolonato-κ2O,O′)tris-(triphenylphosphine-κP)silver(I). Acta Crystallogr. E65 (2009) m191.10.1107/S1600536809000890Search in Google Scholar

5 Muetteries, E. L.; Wright, C. M.: Chelate chemistry. I. Tropolone and aminotroponimine derivatives of the main-group elements. J. Am. Chem. Soc. 86 (1964) 5132–5141.10.1021/ja01077a017Search in Google Scholar

6 Steyl, G.; Roodt, A.: Tropolone as neutral compound and ligand in palladium complexes. In: Models, Mysteries, and Magic of Molecules (Eds. J. C. A. Boeyens, J. F. Ogilvie) p. 325–340. Springer Verlag 2008.10.1007/978-1-4020-5941-4_15Search in Google Scholar

7 Brunner, H.; Knott, A.; Benn, R.; Rufinska, A.: Asymmetrische katalysen: XXVII. Rh-komplexe mit von tropolon abgeleiteten optisch aktiven liganden. J. Organomet. Chem. 295 (1985) 211.10.1016/0022-328X(85)80273-4Search in Google Scholar

8 Dyrssen, D.: Studies on the extraction of metal complexes. Acta Chem. Scand. 9 (1955) 1567–1574.10.3891/acta.chem.scand.09-1567Search in Google Scholar

9 Schutte, M.; Visser, H. G.; Roodt, A.: Aquatricarbonyl(3,5,7-tribromo tropolonato)rhenium(I) methanol solvate. Acta Crystallogr. E64 (2008) m1610–m1611.10.1107/S1600536808038737Search in Google Scholar

10 Ware, D. C.; Palmer, H. R.; Brothers, P. J.; Rickard, C. E.; Wilson, W. R.; Denny, W. A.: Bis-tropolonato derivatives of cobalt(III) complexes of bidentate aliphatic nitrogen mustards as potential hypoxia-selective cytotoxins. J. Inorg. Biochem. 68 (1997) 215–224.10.1016/S0162-0134(97)00090-1Search in Google Scholar

11 Bruker. APEX2, SAINT and SADABS. Brucker AXS Inc., Madison, Wisconsin, USA, (2012).Search in Google Scholar

12 Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M.: SIRPOW.92 – a program for automatic solution of crystal structures by direct methods optimized for powder data. J. Appl. Cryst. 27 (1994) 435–43610.1107/S0021889894000221Search in Google Scholar

13 Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

14 Schneider, T. R.; Sheldrick, G. M.: Substructure solution with SHELXD. Acta Crystallogr. D58 (2002) 1772–1779.10.1107/S0907444902011678Search in Google Scholar

15 Farrugia, L. J.: WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 32 (1999) 837–838.10.1107/S0021889899006020Search in Google Scholar

16 Westrip, S. P.: publCIF: software for editing, validating and formatting crystallographic information files. J. Appl. Cryst. 43 (2010) 920–925.10.1107/S0021889810022120Search in Google Scholar

17 Spek, A. L.: Structure validation in chemical crystallography. Acta Cryst. D65 (2009) 148–155.10.1107/S090744490804362XSearch in Google Scholar PubMed PubMed Central

Received: 2016-10-7
Accepted: 2017-3-14
Published Online: 2017-4-1
Published in Print: 2017-5-24

©2017 Tania N. Hill et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Articles in the same Issue

  1. Cover and Frontmatter
  2. Crystal structure of 2,5-diiodo-4-nitro-1H-imidazole hemihydrate, C6H4I4N6O5
  3. Crystal structure of catena-poly[μ2-2,2′-(1,3-phenylene)diacetato-κ4O,O′:O′′,O′′′)-(μ2-1,6-bis(2-methyl-1H-benzo[d]imidazol-1-yl)hexane-κ2N:N′)cadmium(II)], C32H34CdN4O4
  4. Crystal structure of poly[aqua-(2,2′-bipyridine-κN,N′)-(μ4-5,5′-(hexane-1,6-diyl)-bis(oxy)diisophthalato κ8O1,O2:O3,O4:O5,O6:O7,O8)manganese(II)], C21H21MnN2O7
  5. Crystal structure of poly-[(μ2-((1,3-bis(benzimidazol-1-yl)propane-κ2N:N′)(μ2-4-tert-butyl-phthalato-κ2O:O′)cobalt(II)] monohydrate, C29H30CoN4O5
  6. Crystal structure of 2-amino-4-(3,4,5-trimethoxy-phenyl)-5-(oxo-5,6,7,8-tetrahydro-4H-chromene)-3-carbonitrile – ethanol (1/1), C21H26N2O6
  7. Crystal structure of ethyl 1-benzyl-5-phenyl-1H-pyrazole-3-carboxylate, C19H18N2O2
  8. Crystal structure of 2-(1-benzyl-3-phenyl-1H-pyrazol-5-yl)-5-(4-nitrobenzylthio)-1,3,4-oxadiazole, C25H19N5O3S
  9. Structure and photochromism of 1,2-bis[2-methyl-5-(2-chlorophenyl)-3-thienyl]-3,3,4,4,5,5-hexafluorocyclopent-1-ene, C27H16Cl2F6S2
  10. The crystal structure of the Schiff base (E)-2,6-diisopropyl-N-(pyridin-4-ylmethylene)aniline, C18H22N2
  11. Crystal structure of (E)-2,4-dibromo-6-(((4-methyl-2-nitrophenyl)imino) methyl)phenol, C10H14Br2N2O3
  12. Crystal structure of (bis(2,2′-bipyridine-κ2N,N′))-(3,5-dinitrosalicylato-κ2O,O′)nickel(II), C27H18N6NiO7
  13. Crystal structure of 1-(diethoxy phosphonomethyl) 2-benzoyl-3-chloro-2-cyclohexen-1-ol, C18H24ClO5P
  14. Crystal structure of tetraaqua-bis(1,3-benzimidazol-3-ium-1,3-diacetato-κO)copper(II) hemihydrate, C22H27CuN4O12.50
  15. Crystal structure of 1α,11-dihydroxyeremophil-9-en-8-one, C15H24O3
  16. Crystal structure of 1-ferrocenylsulfonyl-1H-imidazo[4,5-b]pyridine, C16H13FeN3O2S
  17. Crystal structure of bis(μ2-azido-κ2N:N)-dichlorido-bis(μ2-2-(pyridin-2-yl)ethan-1-ol-κ2O,N)dicopper(II), C14H18Cl2Cu2N8O2
  18. Crystal structure of (5,15-cis-bis(2-hydroxy-1-naphthyl)-10-phenyl-20-(4-hydroxyphenyl)-porphyrinato)-(pyridine)-zinc(ii) pyridine solvate, C67H47N7O3Zn
  19. Crystal structure of (μ2-[2,2′-bis(diphenylphosphino)-1,1′-binaphthalene oxide-κ2O,P])-iodido copper(I), C44H32CuIOP2
  20. Crystal structure of 6,8-diphenyl-2-(4-fluorophenyl)-2,3-dihydroquinolin-4(3H)-one, C27H20FNO
  21. Crystal structure of 5,11,17,23-tetra(tert-butyl)-25,26,27,28-tetrahexoxycalix[4]arene, C68H104O4
  22. Crystal structure of N,N′–bis(pyridin-4-ylmethyl)pyrazine-2,3-dicarboxamide dihydrate, C18H20N6O4
  23. Crystal structure of a diaqua-bis(3,5-di(1H-imidazol-1-yl)pyridine-κN)-bis(2-(4-carboxy-phenyl)acetato-κO]manganese(II), C40H36MnN10O10
  24. Crystal structure of 4-(4-hydroxy-3-methoxy-phenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylic acid methyl ester, C21H25NO5
  25. Crystal structure of (E)-4,4′-(ethene-1,2-diyl)bis(3-nitrobenzoic acid) 1.5 hydrate, C16H13N2O9.5
  26. Crystal structure of (E)-2-(5-(4-fluorophenyl)-3-(furan-2-yl)-4,5-dihydro-1H-pyrazol-1-yl)-5-((4-fluorophenyl)diazenyl)-4-methylthiazole, C23H17F2N5OS
  27. Crystal structure of the co-crystalline adduct 4-((4,4-dimethyl-2,6-dioxocyclohexylidene)methylamino)-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide - acetic acid (1/1), C21H24N4O4S ⋅ C2H4O2
  28. Synthesis and crystal structure of 2-((5-chlorobenzo[c][1,2,5]thiadiazol-4-yl)amino)-4,5-dihydro-1H-imidazol-3-ium tetraphenylborate, C33H29BClN5S
  29. Crystal structure of (4-chlorophenyl)(3-ferrocenyl-5-(trifluoromethyl)-1H-pyrazol-1-yl)methanone, C21H14ClF3FeN2O
  30. Crystal structure of (S)-benzyl 3-(benzylcarba-moyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate, C25H24N2O3
  31. Crystal structure of 5-acetyl-3-(3-fluoro-4-morpholinophenyl)oxazolidin-2-one, C15H17FN2O4
  32. Crystal structure of 2-(4-fluorophenyl)-1,3-dimethyl-1H-perimidin-3-ium iodide, C19H16FIN2
  33. Crystal structure of methyl 1H-indole-2-carboxylate, C10H9NO2
  34. Crystal structure of 2,3-diphenyl-1-[(dipropylamino)acetyl]-1,3-diazaspiro[4.5]decan-4-one, C28H37N3O2
  35. Crystal structure of 1-(2H-1,3-benzodioxol-5-yl)-3-(1H-imidazol-1-yl)propan-1-one, C13H12N2O3
  36. Crystal structure of 2,9-dibromo-1,10-phenanthroline, C12H6Br2N2
  37. Crystal structure of 3-(adamantan-1-yl)-4-(4-fluorophenyl)-1H-1,2,4-triazole-5(4H)-thione, C18H20FN3S
  38. Crystal structure of trans-bis((E)-7-oxo-4-(phenyldiazenyl)cyclohepta-1,3,5-trien-1-olato)-κ2O,O′)-bis(pyridine-κN)cobalt(II), C36H28CoN6O4
  39. Crystal structure of 2-(4-methyl-3-phenylthiazol-2(3H)-ylidene)malononitrile, C13H9N3S
  40. Crystal structure of (Z)-3-(adamantan-1-yl)-1-(3-chlorophenyl)-S-benzylisothiourea, C24H27ClN2S
  41. Crystal structure of chlorido{[3-(η5-cyclopenta-dienyl)-2,2,3-trimethyl-1-phenylbutylidene] azanido-κN}[η2(N,O)-N,N-dimethylhydroxylaminato]titanium(IV), C20H27ClN2OTi
  42. Crystal Structure of 1,1′-dimethyl-[4,4′-bipyridine]-1,1′-diium tetrachloridozincate(II), C12H14Cl4N2Zn
  43. Crystal structure of 5-nitro-2-(pyrrolidin-1-yl)benzaldehyde, C11H12N2O3
  44. Crystal structure of 2,3-diphenyl-1-(morpholin-4-ylacetyl)-1,3-diazaspiro[4.5]decan-4-one, C26H31N3O3
  45. Crystal structure of 3,3-dimethyl-3,4-dihydro-1H-benzo[c]chromene-1,6(2H)-dione, C15H14O3
  46. Crystal structure of bis(2-(2-hydroxymethyl)pyridine-κ2N,O)-bis(pivalato-κO)nickel(II), C22H32N2NiO6
  47. Crystal structure of (1,10-phenanthroline-κ2N,N′)-bis(1H-pyrazole-3-carboxylato-κ2N,O)manganese(II) trihydrate, C20H20N6O7Mn
  48. The crystal structure of 3-aminopropan-1-aminium iodide, C3H11N2I
  49. Crystal structure of ethyl 1-(4-chlorophenyl)-5-methyl-1H-1,2,3-triazole-4 carboxylate, C12H12ClN3O2
  50. Crystal structure of 4,4′-((1Z,1′Z)-2,2′-(2,5-diethoxy-1,4-phenylene)bis(ethene-2,1-diyl))dipyridine, C24H24N2O2
  51. Crystal structure of (16S)-12,16-epoxy-11,14-dihydroxy-17(15/16)-abeo-3a,18-cyclo-8,11,13-abietatrien-7-one, C20H24O4
  52. Crystal structure of aquadichlorido(2,4,6-tri-2-pyridyl-1,3,5-triazine-κ3N,N′,N′′)nickel(II) monohydrate, C18H16Cl2N6NiO2
  53. Crystal structure of catena-poly[dichlorido-(μ-ethane-1,2-diyl-bis-(pyridyl-4-carboxylate-κN:N′)mercury(II)], C15H14Cl2HgN2O4
  54. Crystal structure of methyl 2-acetamido-5-chlorbenzoate, C10H10ClNO3
  55. Crystal structure of tetrakis(μ2-3,3-dimethylacrylato-κ2O,O′)-bis(2-aminopyrimidine-κN) dicopper(II), C28H38Cu2N6O8
  56. Crystal structure of 3-amino-8-methoxy-1-phenyl-1H-benzo[f]chromene-2-carbonitrile, C21H16N2O2
  57. Crystal structure of 4-(2-ammonioethyl)morpholin-4-ium dichloride monohydrate, C6H18Cl2N2O2
  58. Crystal structure of 1-(3-((5-bromo-2-hydroxybenzylidene)amino)phenyl)ethanone O-benzyl oxime, C22H19BrN2O2
  59. Crystal structure of 2-(4-(dimethylamino)-2-fluorophenyl)-1,3-bis(1H-1,2,4-triazol-1-yl)propan-2-ol monohydrate, C15H20FN7O2
  60. Crystal structure of 4-bromo-2-(1H-pyrazol-3-yl)phenol, C9H7BrN2O
  61. Crystal structure of 1,2,3,4,5-pentamethyl-1,3-cyclopentadiene, C10H16
Downloaded on 22.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2016-0310/html
Scroll to top button