Home The crystal structure of fac-tricarbonyl(N-benzoyl-N,N-cyclohexylmethylcarbamimidothioato-κ2 S,O)-(pyridine-κN)rhenium(I), C23H24N3O4ReS
Article Open Access

The crystal structure of fac-tricarbonyl(N-benzoyl-N,N-cyclohexylmethylcarbamimidothioato-κ2 S,O)-(pyridine-κN)rhenium(I), C23H24N3O4ReS

  • Luleka Makhakhayi ORCID logo EMAIL logo , Frederick P. Malan ORCID logo , Vuyelwa J. Tembu ORCID logo , Comfort M. Nkambule and Amanda-Lee E. Manicum ORCID logo
Published/Copyright: May 11, 2023

Abstract

C23H24N3O4ReS, orthorhombic, Pbca (no. 61), a = 15.1264(4) Å, b = 15.1167(5) Å, c = 20.1500 Å, V = 4607.5(2) Å3, Z = 8, T = 150(2) K, R gt (F) = 0.0416, wR ref (F 2) = 0.0691.

CCDC no.: 2259028

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.14 × 0.13 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 5.40 mm−1
Diffractometer, scan mode: XtaLAB Synergy R, ω
θ max, completeness: 31.1°, >99 %
N(hkl)measured, N(hkl)uniqueR int: 73,180, 6553, 0.072
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 5438
N(param)refined: 290
Programs: CrysAlispro [1], Olex2 [2], WinGX [3], SHELX [45]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.9576 (3) 0.3976 (3) 0.6787 (2) 0.0231 (8)
C2 0.9621 (3) 0.3719 (3) 0.5492 (2) 0.0229 (8)
C3 1.0041 (3) 0.5338 (3) 0.60326 (19) 0.0233 (8)
C4 0.7412 (3) 0.3490 (3) 0.6613 (2) 0.0260 (9)
H4 0.766036 0.366106 0.702659 0.031*
C5 0.6657 (3) 0.2981 (3) 0.6615 (2) 0.0326 (10)
H5 0.639454 0.280115 0.702166 0.039*
C6 0.6286 (3) 0.2736 (3) 0.6013 (2) 0.0316 (9)
H6 0.576853 0.238062 0.600066 0.038*
C7 0.6678 (3) 0.3015 (3) 0.5436 (2) 0.0281 (9)
H7 0.642954 0.286455 0.501773 0.034*
C8 0.7440 (3) 0.3518 (3) 0.5473 (2) 0.0241 (8)
H8 0.771213 0.370281 0.507138 0.029*
C9 0.7247 (2) 0.5736 (2) 0.64389 (18) 0.0190 (7)
C10 0.7691 (2) 0.5767 (2) 0.53014 (18) 0.0182 (7)
C11 0.7454 (2) 0.6206 (3) 0.46589 (18) 0.0183 (7)
C12 0.7991 (3) 0.6077 (3) 0.41046 (19) 0.0232 (8)
H12 0.849996 0.571062 0.413620 0.028*
C13 0.7784 (3) 0.6480 (3) 0.3511 (2) 0.0295 (9)
H13 0.815535 0.639597 0.313579 0.035*
C14 0.7041 (3) 0.7006 (3) 0.3456 (2) 0.0318 (10)
H14 0.689942 0.727837 0.304476 0.038*
C15 0.6502 (3) 0.7134 (3) 0.4004 (2) 0.0316 (10)
H15 0.598970 0.749429 0.396866 0.038*
C16 0.6712 (3) 0.6735 (3) 0.4604 (2) 0.0250 (8)
H16 0.634333 0.682653 0.497998 0.030*
C17 0.6505 (3) 0.5511 (3) 0.7513 (2) 0.0301 (9)
H17A 0.707889 0.525691 0.763320 0.045*
H17B 0.603777 0.507592 0.759450 0.045*
H17C 0.639552 0.604068 0.778106 0.045*
C18 0.5643 (3) 0.5947 (3) 0.64901 (19) 0.0201 (8)
H18 0.575368 0.639444 0.613448 0.024*
C19 0.5271 (3) 0.5126 (3) 0.6155 (2) 0.0288 (9)
H19A 0.513822 0.466907 0.649289 0.035*
H19B 0.571255 0.488025 0.584254 0.035*
C20 0.4423 (3) 0.5370 (4) 0.5778 (2) 0.0362 (11)
H20A 0.456717 0.578844 0.541521 0.043*
H20B 0.416414 0.483176 0.557647 0.043*
C21 0.3749 (3) 0.5795 (4) 0.6245 (2) 0.0367 (11)
H21A 0.322501 0.598294 0.598734 0.044*
H21B 0.355365 0.535175 0.657608 0.044*
C22 0.4133 (3) 0.6581 (3) 0.6599 (2) 0.0333 (10)
H22A 0.369215 0.681432 0.691708 0.040*
H22B 0.426136 0.705211 0.627159 0.040*
C23 0.4981 (3) 0.6350 (3) 0.6972 (2) 0.0279 (9)
H23A 0.523372 0.688959 0.717515 0.033*
H23B 0.484801 0.592302 0.733145 0.033*
N1 0.7813 (2) 0.3757 (2) 0.60527 (16) 0.0213 (6)
N2 0.7138 (2) 0.5930 (2) 0.57954 (16) 0.0205 (7)
N3 0.6510 (2) 0.5751 (2) 0.68101 (16) 0.0225 (7)
O1 0.9898 (2) 0.3636 (2) 0.72413 (15) 0.0360 (7)
O2 0.99820 (19) 0.3184 (2) 0.51869 (15) 0.0311 (7)
O3 1.0644 (2) 0.5806 (2) 0.60287 (15) 0.0317 (7)
O4 0.83560 (17) 0.52501 (17) 0.52858 (13) 0.0203 (5)
Re1 0.90396 (2) 0.45652 (2) 0.60597 (2) 0.01838 (5)
S1 0.82605 (6) 0.55705 (7) 0.68298 (5) 0.02222 (19)

1 Source of materials

The title complex was synthesized using the starting precursor, fac-[NEt4]2 [Re(CO)3Br3], as explained by Albert et al. [6], Manicum et al. [7, 8]. fac-[NEt4]2 [Re (CO)3Br3], (201.1 mg, 0.336 mmol) was dissolved in 5 mL of acidic water (pH = 2.2) and stirred at room temperature for 10 min. AgNO3 (134.4 mg, 0.7912 mmol) was added to the solution and stirred for 24 h at room temperature. The precipitate, AgBr, was separated and weighed. N-(cyclohexyl(methyl)carbamothioyl) benzamide (N–CyHMCB) bidentate ligand (72.11 mg, 0.336 mmol) was added to the filtrate and the reaction mixture was stirred at room temperature for 24 h. The light-yellow precipitate (fac-[Re(N–CyHMCB)(CO)3(OH2)]) was filtered off and dried. fac-[Re(N–CyHMCB)(CO)3(OH2)], (74.5 mg, 0.132 mmol) was dissolved in methanol (5 mL), and pyridine (0.07 mL) was added. The solution was first stirred for 24 h at room temperature. The light-yellow solid (product) was obtained by evaporation of the solvent and the precipitate was recrystallized from ethylacetate:hexane (8:2). Yield = 71.52 mg, 86 %, IR (KBr, cm −1 ): v CO 2103, 2007, 1879.

2 Experimental details

All the hydrogen atoms were positioned geometrically and refined using a riding model with fixed C–HAromatic = 0.97 Å; C–Hmethyl = 0.96 Å. The H atoms isotropic displacement parameters were fixed; U iso(H) = 1.2U eq (C) for aromatic and U iso(H) = 1.5U eq (C) for methyl, allowing them to ride on the parent atom. The graphics were obtained by using the Mercury program with 50 % probability ellipsoids. All the hydrogen in the structure was omitted for clarity.

3 Comment

Organometallic rhenium(I) compounds have shown great promise for the development of new anticancer agents in recent years [8, 9]. A variety of tricarbonyl complexes containing mono- and bidentate ligands with nitrogen, oxygen, selenium, and phosphorus donors were discovered to have significant cytotoxic effects on various cancer cell lines [9], [10], [11], [12]. However, the tricarbonyl precursor is particularly appealing not only for its potential use in biological applications but also for its flexibility of M(CO)3 to accommodate different ligands, which has led to the development of several strategies to saturate the coordination sphere with ligands from a single ligand to a combination of two or more ligands [13], [14], [15].

The molecular structure of the title complex comprises three facial tricarbonyl ligands, a thiourea bidentate ligand (S,O) in the equatorial plane which is trans to the two of the carbonyl ligands and N-coordinated pyridine ligand (monodentate) in the axial position as shown in the Figure. The complex was obtained by using the [2 + 1] mixed ligand approach on fac-[M(CO)3(O2H)3]+ moiety. In particular, the [2 + 1] approach provides a combination strategy of a bidentate and a monodentate ligand to yield a unique asymmetric tailoring of the complex that affects its (bio)chemical properties such as charge, lipophilicity, and stability [16, 17]. The structure of the titled complex possesses a distorted octahedral geometry around the rhenium metal center as seen with the bond angles C1—Re—O4 and C3—Re—N1, reported as 175.27(14)° and 175.88(14)°, respectively. The bite angle distortion of the structure was 85.96(7)°, which is similar to that of other rhenium metals coordinated with thiourea ligands [18], [19], [20]. The bond length between the three carbons from the carbonyl ligands and rhenium metal, Re—C1, Re—C2, and Re—C3 were found as 1.897(4), 1.914(4), and 1.929(4) Å, respectively. The bond distances Re—S1, Re—N1, and Re—O4 were arranged in decreasing order 2.471(10), 2.220(3), and 2.138(3) Å, respectively. The bond length obtained in this study agrees with the other rhenium and rhodium structures that were reported previously [2123]. There are three intramolecular hydrogen bonds in the titled complex that stabilizes the complex further from C16—H16⋯N2 which has the bond length of 2.768(5) Å, C17—H17A⋯S1 with a bond length of 2.992(5) Å, and C8—H8⋯O4 with a bond length of 2.986(5) Å.


Corresponding author: Luleka Makhakhayi, Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa, E-mail:

Funding source: National Research Foundation of South Africa

Award Identifier / Grant number: 129468

Funding source: University of Pretoria

Funding source: NCP Chlorchem

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We would like to thank the National Research Foundation of South Africa (Grant No. 129468), Tshwane University of Technology, and the University of Pretoria for institutional and financial support. The authors would like to express their gratitude towards NCP Chlorchem for financial assistance.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. System, C. S. Rigaku Oxford Diffraction. CrysAlis PRO; Software System: Yarnton, UK, 2021.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838; https://doi.org/10.1107/s0021889899006020.Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

6. Alberto, R., Schibli, R., Waibel, R., Abram, U., Schubiger, A. P. Basic aqueous chemistry of [M(OH2)3(CO)3]+ (M = Re, Tc) directed towards radiopharmaceutical application. Coord. Chem. Rev. 1999, 190, 901–919; https://doi.org/10.1016/s0010-8545(99)00128-9.Search in Google Scholar

7. Manicum, A. E., Schutte-Smith, M., Malan, F. P., Visser, H. G. Steric and electronic influence of Re(I) tricarbonyl complexes with various coordinated β-diketones. J. Mol. Struct. 2022, 1264, 133278; https://doi.org/10.1016/j.molstruc.2022.133278.Search in Google Scholar

8. Manicum, A. E., Schutte-Smith, M., Visser, H. G., Pretorius, C., Roodt, A. The crystal structure tetraethyl ammonium factricarbonyl (hexafluoroacatylacenato-κ2O,O′)-(nitrato-κO) rhenium(I), C16H21N2F6Re. Z. Kristallogr. N. Cryst. Struct. 2016, 231, 263–266; https://doi.org/10.1515/ncrs-2015-0115.Search in Google Scholar

9. Collery, P., Desmaele, D., Vijaykumar, V. Design of rhenium compounds in targeted anticancer therapeutics. Curr. Pharm. Des. 2019, 25, 3306–3322; https://doi.org/10.2174/1381612825666190902161400.Search in Google Scholar PubMed

10. Bauer, E. B., Haase, A. A., Reich, R. M., Crans, D. C., Kühn, F. E. Organometallic and coordination rhenium compounds and their potential in cancer therapy. Coord. Chem. Rev. 2019, 393, 79–117; https://doi.org/10.1016/j.ccr.2019.04.014.Search in Google Scholar

11. Leonidova, A., Gasser, G. Underestimated potential of organometallic rhenium complexes as anticancer agents. ACS Chem. Biol. 2014, 9, 2180–2193; https://doi.org/10.1021/cb500528c.Search in Google Scholar PubMed

12. Murphy, B. L., Marker, S. C., Lambert, V. J., Woods, J. J., MacMillan, S. N., Wilson, J. J. Synthesis, characterization, and biological properties of rhenium(I) tricarbonyl complexes bearing nitrogen-donor ligands. J. Organomet. Chem. 2020, 901, 121064.10.1016/j.jorganchem.2019.121064Search in Google Scholar

13. Jurisson, S. S., Lydon, J. D. Potential technetium small molecule radiopharmaceuticals. Chem. Rev. 1999, 99, 2205–2218; https://doi.org/10.1021/cr980435t.Search in Google Scholar PubMed

14. Liu, G., Hnatowich, D. J. Labeling biomolecules with radiorhenium: a review of the bifunctional chelators. Anti Cancer Agents Med. Chem. 2007, 7, 367–377; https://doi.org/10.2174/187152007780618144.Search in Google Scholar PubMed PubMed Central

15. Papagiannopoulou, D. Radiopharmaceutical applications of organometallic technetium and rhenium complexes. Curr. Inorg. Chem. 2012, 2, 228–247; https://doi.org/10.2174/1877944111202020228.Search in Google Scholar

16. Abram, U., Abram, S., Alberto, R., Schibli, R. Ligand exchange reactions starting from [Re(CO)3Br3]2− synthesis, characterization and structures of rhenium(l) tricarbonyl complexes with thiourea and thiourea derivatives. Inorg. Chim. Acta 1996, 248, 193–202; https://doi.org/10.1016/0020-1693(96)05014-1.Search in Google Scholar

17. Hayes, T. R., Powell, A. S., Barnes, C. L., Benny, P. D. Synthesis and stability of 2+1 complexes of N,N-diethylbenzoylthiourea with [MI(CO)3]+ (M = Re, 99mTc). J. Coord. Chem. 2015, 68, 3432–3448; https://doi.org/10.1080/00958972.2015.1071801.Search in Google Scholar

18. Komane, W. K., Mokolokolo, P., Vatsha, B., Manicum, A. The crystal structure of fac-tricarbonyl (N′-benzoyl-N,N-diphenylcarbamimidothioato-κ2S,O)-(pyrazole-κN)rhenium(I)-methanol(1/1) C26H23O4N4SRe. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 767–769; https://doi.org/10.1515/ncrs-2021-0046.Search in Google Scholar

19. Ramoba, V. L., Alexander, T. O., Visser, H. G., Manicum, A. The crystal structure of fac-tricarbonyl (1,10-phenanthroline-κ2N,N′)-(pyrazole-κN) rhenium(I)nitrate, C18H12O3N4Re. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 1203–1205; https://doi.org/10.1515/ncrs-2020-0249.Search in Google Scholar

20. Schmitt, B., Gerber, T. I. A., Hosten, E., Betz, R. Monomeric/dimeric complexes of fac-[Re(CO)3]+ with benzoylthiourea derivatives. Inorg. Chem. Commun. 2012, 24, 136–139; https://doi.org/10.1016/j.inoche.2012.08.008.Search in Google Scholar

21. Moremi, M. J., Alexander, O. T., Vatsha, B., Makgopa, K., Manicum, A. The crystal structure of fac-tricarbonyl(4,4-dimethyl 2,2-dipyridyl-κ2-N,N′)(pyrazole-κN)rhenium(I) nitrate, C18H12O3N4Re. Z. Kristallogr. N. Cryst. Struct. 2020, 236, 33–35; https://doi.org/10.1515/ncrs-2020-0458.Search in Google Scholar

22. Warsink, S., Riekert, K., Janse Van Rensburg, J. M., Venter, J. A., Otto, S., Botha, E., Roodt, A. Kinetic-mechanistic and solid-state study of the oxidative addition and migratory insertion of iodomethane to [Rhodium(S,O–BdiPT or N,O-ox)(CO)(PR1 R2 R3)] complexes. Eur. J. Inorg. Chem. 2018, 2018, 3615–3625; https://doi.org/10.1002/ejic.201800293.Search in Google Scholar

23. Wei, L., Zubieta, J. fac–Bromotricarbonyl[2-(2-pyridylmethyl)-2,3-dihydro-1H-isoindol-1-one]rhenium(I) methanol solvate. Acta Crystallogr. 2005, C61, m95–m97; https://doi.org/10.1107/s0108270104029592.Search in Google Scholar

Received: 2023-04-01
Accepted: 2023-04-26
Published Online: 2023-05-11
Published in Print: 2023-08-28

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of a polymorph of potassium picrate, C6H2KN3O7
  4. The crystal structure of (1E,2E)-1,2-bis(quinolin-2-ylmethylene)hydrazine, C20H14N4
  5. 5-Amino-2-chloro-4-fluoro-N-(N-isopropyl-N-methylsulfamoyl) benzamide, C11H15O3ClFN3S
  6. Crystal structure of trans-N 1,N 8-bis(2-cyanoethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, C22H42N6
  7. The crystal structure of [N-{[2-(oxy)-4-methoxyphenyl](phenyl)methylidene}alaninato]-diphenyl-silicon(IV) – chloroform (1/1), C29H25NO4Si·CHCl3
  8. Crystal structure of tetracarbonyl-{μ-[N-(diphenylphosphanyl)-N,P,P-triphenylphosphinous amide]}-bis[μ-(phenylmethanethiolato)]diiron (Fe–Fe), C48H39Fe2NO4P2S2
  9. Crystal structure of baryte from Mine du Pradet (France)
  10. The crystal structure of [(2,2′-bipyridine-6-carboxylato-κ3 N,N,O)-(6-phenylpyridine-2-carboxylate-κ2 N,O)copper(II)] monohydrate, C23H17N3O5Cu
  11. Crystal structure of bis(μ-benzeneselenolato)-(μ-[N-benzyl-N-(diphenylphosphanyl)-P,P-diphenylphosphinous amide])-tetracarbonyl diiron (Fe–Fe), C47H37Fe2NO4P2Se2
  12. The crystal structure of diaqua-methanol-κ1 O- (3-thiophenecarboxylato-κO)-(2,2′-dipyridyl-κ2 N,N′)manganese(II) 3-thiophenecarboxylate, C21H22N2O7S2Mn
  13. Crystal structure of catena-poly[tetrakis(butyl)-μ2-2-((oxido(phenyl)methylene)hydrazineylidene)propanoato-κ4 O:O,O′,N-μ2-2-((oxido(phenyl)methylene)hydrazineylidene)propanoato-κ4 O,N,O′:N′-ditin(IV)], C34H50N6O6Sn2
  14. Crystal structure of 4-chloro-N′-[(1E)-(2-nitrophenyl)methylidene]benzohydrazide, C14H10ClN3O3
  15. The crystal structure of 3-(1′-deoxy-3′,5′-O-dibenzy-β-d-ribosyl)adenine dichloromethane solvate, C49H52Cl2N10O6
  16. The crystal structure of (Z)-4-amino-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H17N3O
  17. The co-crystal structure of etoricoxib–phthalic acid (1/1), C18H15ClN2O2S·C8H6O4
  18. Crystal structure of (glycinto-κ 2 O,N )-[5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ 4 N,N ,N ,N ]nickel(II) perchlorate monohydrate C18H42ClN5NiO7
  19. The crystal structure of catena-poly[bis(1-ethylimidazole-k1 N)-(μ 2-benzene-1-carboxyl-3,5-dicarboxylato-κ 2 O, O′)zinc(II)], C19H20N4O6Zn
  20. Crystal structure of 3-(thiazol-2-ylcarbamoyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C11H12N2O4S
  21. Rietveld structure analysis of keatite, a rare, metastable SiO2 polymorph
  22. Crystal structure of catena-poly[(μ2-isophthalato-k3 O,O′:O″)(4-(4-pyridyl)-2,5-dipyrazylpyridine-k3 N,N′,N″)cobalt(II)] trihydrate C26H22N6O7Co1
  23. Crystal structure of 3,5–di-O-benzoyl-1,2-O-isopropylidene-α–D-ribose, C22H22O7
  24. The crystal structure of fac-tricarbonyl(6-bromo-2,2-bipyridine-κ2 N,N)-(nitrato-κO)rhenium(I), C13H7BrN3O6Re
  25. The crystal structure of (E)-N′-(4-hydroxy-3-methoxybenzylidene)-2-naphthohydrazide monohydrate, C19H18N2O4
  26. The crystal structure of 5,5′-diselanediyl-bis(2-hydroxybenzaldehyde), C14H10O4Se2
  27. The crystal structure of catena-poly[diaqua-m2-dicyanido-κ2 C:N-dicyanido-κ1 C-bis(4-(pyridin-4-yl)benzaldehyde-κ1N)iron(II)-platinum(II), C28H22N6O4PtFe
  28. Redetermination of the crystal structure of 5,14-dihydro-6,17-dimethyl-8,15-diphenyldibenzo(b,i)(1,4,8,11)tetra-azacyclotetradecine, C32H28N4
  29. Crystal structure of poly[(μ3-2-(3,5-dicarboxyphenyl) benzimidazole-6-carboxylato-κ4O:O:O′:O″)lead(II)] monohydrate, C16H10N2O7Pb
  30. The crystal structure of fac-tricarbonyl(2-pyridin-2-yl-quinoline-κ2 N,N′)-(pyrazole-κN)rhenium(I)nitrate, C20H14N4O3ReNO3
  31. Crystal structure of dibromo-dicarbonyl-bis(tricyclohexylphosphine)-osmium(II) dichloromethane solvate, C38H66Br2O2OsP2
  32. Crystal structure of poly[bis(μ 2-2,6-bis(1-imidazoly)pyridine-κ 2 N:N′)copper(II)] diperchlorate dihydrate, C22H22Cl2CuN10O10
  33. The crystal structure of fac-tricarbonyl(N-benzoyl-N,N-cyclohexylmethylcarbamimidothioato-κ2 S,O)-(pyridine-κN)rhenium(I), C23H24N3O4ReS
  34. Crystal structure of (E)-7-fluoro-2-(4-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O
  35. Synthesis and crystal structure of 1-((3R,10S,13S, 17S)-3-((2-methoxyphenyl)amino)-10,13-dimethylhexadecahydro-1H-cyclopenta[α]phenanthren-17-yl)ethan-1-one, C28H41NO2
  36. The crystal structure of fac-tricarbonyl((pyridin-2-yl)methanamino-κ2 N,N′)-((pyridin-2-yl)methanamino-κN)rhenium(I) nitrate, C15H16O3N4Re
  37. The crystal structure of (1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)-N-((1-(4-vinylbenzyl)-1H-benzo[d]imidazol-2-yl)methyl)methanamine-κ 4 N,N′,N″,N‴)tris(nitrato-kO,O′)-erbium(III), C29H27ErN8O9
  38. Crystal structure of tetracene-5,12-dione, C18H10O2
  39. Crystal structure of (3R,3aS,6R,6aR)-6-hexyl-3-methyltetrahydrofuro[3,4-b]furan-2,4-dione, C13H20O4
  40. The crystal structure of N1,N3-bis((E)-thiophen-2-ylmethylene)isophthalohydrazide monohydrate, C18H16N4O3S2
  41. Crystal structure of methyl ((4-aminobenzyl)sulfonyl)-L-prolinate, C13H18N2O4S
  42. Crystal structure of (E)-3-(3-methoxybenzylidene)benzofuran-2(3H)-one, C16H12O3
  43. Synthesis and crystal structure (E)-1-(4-bromo-2-hydroxyphenyl)-3-(dimethylamino)prop-2-en-1-one, C11H12BrNO2
  44. Synthesis and crystal structure of (S,E)-4-hydroxy-3-(2-((4aR,6aS,7R,10aS,10bR)-3,3,6a,10b-tetramethyl-8-methylenedecahydro-1H-naphtho[2,1-d][1,3]dioxin-7-yl)ethylidene)dihydrofuran-2(3H)-one, C23H34O5
  45. The crystal structure of N,N′-(1,2-phenylene)bis (2-((2-oxopropyl)selanyl)benzamide), C26H24N2O4Se2
  46. The crystal structure of 1-ethyl-2-nitro-imidazole oxide, C5H7N3O3
  47. The crystal structure of 2-(2-fluorophenyl)naphtho[2,1-d]thiazole, C17H10FNS
  48. Crystal structure of (E)-2,4-di-tert-butyl-6-(((2-fluorophenyl)imino) methyl)phenol, C21H26FNO
  49. Synthesis and crystal structure of 3-methyl-2-(methylthio)-4H-chromen-4-one, C12H12O2S
  50. Crystal structure of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-5,10-dione, C14H4O2S4
  51. The crystal structure of dimethyl 2,2ʹ-((adamantane-1,3-diylbis(4,1-phenylene)) bis(oxy))diacetate, C28H32O6
  52. The crystal structure of N-(6-chloro-2-methyl-2H-indazol-5-yl)acetamide, C10H10ClN3O
  53. Crystal structure of triaqua-(5-bromoisophthalato-κ1 O)-(2,2′-bipyridine-κ2 N:N′)nickel(II) hydrate, C18H19BrN2NiO8
  54. The crystal structure of 2-amino-4-carboxypyridin-1-ium perchlorate, C6H7ClN2O6
  55. The crystal structure of catena-poly[5-aminonicotinic acid-k1 N-m2-bromido-copper(I)], Cu(C6N2H6O2)Br
  56. The crystal structure of 2,2-bis(3-methoxyphenyl)-1-tosyl-1,2-dihydro- 4,3λ4  -[1,3,2]diazaborolo[4,5,1-ij]quinoline - dichloromethane (1/1)
  57. The crystal structure of catena-poly[bis(6-phenylpyridine-2-carboxylato-κ2 N,O)-(μ2-4,4′-bipyridne-κ2 N:N)cadmium(II)], C34H24N4O4Cd
  58. The crystal structure of 5,7-dinitropyrazolo[5,1-b]quinazolin-9(4H)-one, C10H5N5O5
  59. Crystal structure of rac-1,8-bis(2-carbamoylethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, C22H46N6O2
  60. The crystal structure of (E)-N -(2-bromobenzylidene)-2-naphthohydrazide, C36H26Br2N4O2
  61. The crystal structure of 5-nitronaphthoquinone, C10H5NO4
  62. The crystal structure of (S, R p )-4–benzhydrylideneamino-12-(4-tert-butyl oxazolin-2-yl)[2.2]paracyclophane, C36H36N2O
  63. Synthesis and crystal structure of 2-(2-oxo-2-(o-tolyl)ethyl)-4H-chromen-4-one, C18H14O3
  64. Crystal structure of 2-(thiazol-2-yl)hexahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione, C11H10N2O3S
  65. Crystal structure of N-(diaminomethylene)-1-(dimethylamino)-1-iminiomethanaminium dichloride, C4H13Cl2N5
  66. Crystal structure of poly[(μ3-3, 5-dichloro-2-hydroxy-benzoato-κ4 Cl,O:O′:O″) silver(I)], C7H3AgCl2O3
  67. The crystal structure of tetrakis(1-isopropylimidazole-κ1 N)-[μ2- imidazole-4,5-dicarboxylato-κ4 O,N,O′,N′)]- trioxido-divanadium, C29H41N10O7V2
  68. Crystal structure of catena-[(μ3-bromido)-(1H-1,2,4-triazol-1-yl)benzoato-κ1 N)copper(I)], C9H7BrCuN3O2
  69. The crystal structure of (E)-4-fluoro-N′-(1-(2-hydroxyphenyl)propylidene)benzohydrazide, C16H15FN2O2
Downloaded on 10.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0157/html
Scroll to top button