Home The crystal structure of fac-tricarbonyl(6-bromo-2,2-bipyridine-κ2 N,N)-(nitrato-κO)rhenium(I), C13H7BrN3O6Re
Article Open Access

The crystal structure of fac-tricarbonyl(6-bromo-2,2-bipyridine-κ2 N,N)-(nitrato-κO)rhenium(I), C13H7BrN3O6Re

  • Marcus Mkhatshwa ORCID logo EMAIL logo , Frederick P. Malan ORCID logo , Katlego Makgopa ORCID logo and Amanda-Lee E. Manicum ORCID logo
Published/Copyright: May 9, 2023

Abstract

C13H7BrN3O6Re, monoclinic, P21/n (no. 14), a = 7.2645(1) Å, b = 10.0607(1) Å, c = 20.7717(2) Å, β = 97.1800(10)°, V = 1506.22(3) Å3, Z = 4, R gt(F) = 0.0359, wR ref(F 2) = 0.0810, T = 150 K.

CCDC no.: 2256333

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

 
Shows the molecular structure of C13H7BrN3O6Re. Hydrogen atoms were omitted for clarity.

Shows the molecular structure of C13H7BrN3O6Re. Hydrogen atoms were omitted for clarity.

Table 1:

Data collection and handling.

Crystal: Yellow cuboid
Size: 0.35 × 0.18 × 0.16 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 19.3 mm−1
Diffractometer, scan mode: XtaLAB Synergy R, ω
θ max, completeness: 79.0°, >99 %
N(hkl)measured, N(hkl)unique, R int: 31772, 3207, 0.054
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 3171
N(param)refined: 217
Programs: CrysAlis PRO [1], Olex2 [2], WinGX [3], Shelx [45]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Br 0.43740 (13) 0.42345 (8) 0.23869 (4) 0.0422 (2)
C1 0.9142 (9) 0.2668 (6) 0.3426 (3) 0.0250 (13)
C2 0.5909 (11) 0.1549 (7) 0.2933 (4) 0.0335 (15)
C3 0.7723 (9) 0.0558 (6) 0.3957 (3) 0.0281 (14)
C4 0.5092 (9) 0.5121 (7) 0.3178 (3) 0.0250 (13)
C5 0.4639 (9) 0.6462 (7) 0.3174 (3) 0.0278 (14)
H5 0.397156 0.686662 0.280209 0.033*
C6 0.5191 (10) 0.7184 (7) 0.3726 (4) 0.0302 (15)
H6 0.494111 0.810959 0.373956 0.036*
C7 0.6114 (9) 0.6547 (6) 0.4265 (3) 0.0253 (13)
H7 0.650459 0.703263 0.464980 0.030*
C8 0.6464 (8) 0.5190 (6) 0.4235 (3) 0.0201 (12)
C9 0.7411 (8) 0.4480 (6) 0.4797 (3) 0.0177 (11)
C10 0.7921 (8) 0.5097 (6) 0.5399 (3) 0.0224 (12)
H10 0.766977 0.601191 0.545959 0.027*
C11 0.8796 (8) 0.4341 (6) 0.5901 (3) 0.0228 (12)
H11 0.915376 0.473716 0.631276 0.027*
C12 0.9153 (9) 0.3022 (7) 0.5809 (3) 0.0253 (13)
H12 0.975079 0.249559 0.615314 0.030*
C13 0.8622 (8) 0.2471 (6) 0.5200 (3) 0.0220 (12)
H13 0.887517 0.155860 0.513203 0.026*
N1 0.5976 (7) 0.4461 (5) 0.3681 (2) 0.0201 (10)
N2 0.7766 (7) 0.3182 (5) 0.4707 (2) 0.0175 (10)
N3 0.3340 (8) 0.1199 (6) 0.4218 (3) 0.0287 (12)
O1 1.0532 (7) 0.2873 (5) 0.3235 (3) 0.0363 (12)
O2 0.5439 (9) 0.1010 (6) 0.2457 (3) 0.0506 (16)
O3 0.8263 (7) −0.0483 (5) 0.4069 (3) 0.0371 (12)
O4 0.4323 (6) 0.2199 (4) 0.4206 (2) 0.0253 (9)
O5 0.3642 (8) 0.0158 (6) 0.3934 (3) 0.0523 (16)
O6 0.1981 (8) 0.1273 (6) 0.4536 (3) 0.0511 (15)
Re 0.68498 (4) 0.23286 (2) 0.37591 (2) 0.01883 (9)

1 Source of materials

The starting complex was synthesized according to a published procedure [6]. [NEt4]2[Re(CO)3(Br)3] (995 mg; 1.3 mmol) was dissolved in 5 mL of water (pH 2.2) by stirring for 10 min at room temperature. Silver nitrate (661 mg; 3.9 mmol) was added to the solution and stirred for 24 h at room temperature. The dark-grey silver bromide (130 mg; 6.9 mmol) that precipitated was filtered off. 6-Bromo-2,2-bipyridine (308 mg; 1.3 mmol), was added to the filtrate and stirred for 36 h at room temperature. The yellow precipitate was filtered and dried. Although fac-[Re(CO)3(Brbpy)(H2O)] structure was expected from the filtrate, crystals of fac-[Re(CO)3(Brbpy)(NO3)] were obtained, which could be due to the presence of excess nitrate ions from the silver nitrate salt and nitric acid (HNO3, used for preparation of pH 2.2 water). Crystals suitable for the collection with X-ray diffraction formed. Yield = 563 mg, 83 %, IR (FTIR cm −1 ): v co = 2024, 1921·[DFM1] 1 H NMR (400MHz, DMSO-d 6 ): δ (ppm) δ 9.16–9.15 (m, 1H), 8.76 (dJ = 1.0 Hz, 1H), 8.72–8.71 (m, 1H), 8.39 (d, 1H), 7.99 (d, J = 1.8 Hz, 1H), 7.87–7.84 (m, 1H), 7.52–7.49 (m, 1H). 13 C NMR (100MHz, DMSO-d 6 ): δ (ppm) 157.97, 157.09, 156.44, 153.84, 150.02, 143.50, 141.93, 141.20, 138.11, 132.96, 128.87, 125.34, 120.28.

2 Experimental details

All hydrogen atoms were geometrically positioned and discernibly refined using a riding model, with fixed C–HAromatic = 0.95 Å. The isotropic displacement parameters of the H atoms were fixed; U iso(H) = 1.2U eq(C) for aromatic, allowing them to ride on the parent atom. The images were created using the MERCURY program with 50 % probability ellipsoids. For clarity, all of the H-atoms on the title structure were removed.

3 Comment

For many years, organometallic complexes have been the focus of significant research as non-invasive imaging contrast agents [7], [8], [9], [10]. Rhenium(I) complexes with a fac-[M(CO)3(N,N′)(L)] n (where M = Re, N,N′ = N,N′-bidentate or α-diimine ligand, L = monodentate ligand, and n = 0 charge) moiety have received widespread attention in the scientific community since their initial investigation by Wrighton and Morse (1974) [11]. Interestingly, luminous Re(I) tricarbonyl complexes coupled with α-diimine ligands have received continued interest due to their photophysical and photochemical features, which are applicable for cancer cell bioimaging [7, 8, 12]. Due to their biological stability, low toxicity, high Stokes shifts, and extended luminescence lifetimes, the octahedral d 6 and low-spin Re(I) tricarbonyl complexes have found use in many aspects in vivo [6, 13], [14], [15], [16], [17], [18]. This work focuses on the crystallographic study of the coordination chemistry of the molecular structure of N,N′-bidentate ligand [6-bromo-2,2′-bipyridine (Brbpy)] in the equatorial plane, which is trans to two carbonyls (CO) ligands and an O-coordinated monodentate ligand [nitrate (NO3)] in the axial position. This was achieved by utilizing the [2 + 1] approach in the interest of the chemistry of Re(I) and its analogue, Tc(I), tricarbonyl complexes, aimed at the continuous application of cancer theranostics. The technique entails the replacement of two labile water molecules in the equatorial plane, followed by the axial coordination of the monodentate aqua ligand.

In this investigation, the title complex shows a slightly distorted octahedron, which comprises three facially arranged carbonyl ligands, one bidentate bpy-based ligand, as well as a monodentate nitrato ligand. Its molecular structure is shown in the Figure, in which the hydrogen atoms were removed for clarity. The distortion from ideal octahedral geometry is most noticeable in the bond angles C1–Re–C3 at 87.9(3)°, C1–Re–C2 at 88.8(3)°, and N2–Re–C1 at 94.3(2)°. The bond lengths between rhenium and the three carbons of the carbonyl ligands ranging between 1.912(7) and 1.932(6) Å, whereas the bond distances between Re–O4, Re–N1, and Re–N2 are 2.162(4), 2.237(5), and 2.175(4) Å, respectively. The acquired results are consistent with other structures previously published by Domínguez et al. [9], Ramoba et al. [19], and Moremi et al. [20]. The small bite angle of the title structure was determined to be 74.87(17)° for N1–Re–N2, which is just the same as that reported by Dominguez et al. (74.67(19)°) of a comparable structure [9]. Moreover, the crystal structure is at least stabilized by six intermolecular (six C–H⋯O) hydrogen bonding interactions. Complexes pack in a head-to-head fashion and are held together by intra- and intermolecular hydrogen bonds [21], [22], [23].


Corresponding author: Marcus Mkhatshwa, Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa, E-mail:

Acknowledgements

We would like to thank the National Research Foundation of South Africa (Grant No. 123499), Tshwane University of Technology, and the University of Pretoria for institutional and financial support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: NRF (scholarship specific number 123499).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. System, C. S. Rigaku Oxford diffraction; CrysAlisPro Software System: Yarnton, UK, 2021.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. Olex2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838; https://doi.org/10.1107/s0021889899006020.Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Cryst. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Sheldrick, G. M. Shelxtl – integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

6. Louie, A. Multimodality imaging probes: design and challenges. Chem. Rev. 2010, 110, 3146–3195; https://doi.org/10.1021/cr9003538.Search in Google Scholar PubMed PubMed Central

7. Kirgan, R. A., Sullivan, B. P., Rillema, D. P. Photochemistry and photophysics of coordination compounds: rhenium. In PhotoChemistry and Photophysics of Coordination Compounds II; Balzani, V., Campagna, S., Eds. Springer: Berlin, Heidelberg, 2007; pp. 45–100.10.1007/128_2007_143Search in Google Scholar

8. Shaw, J. R., Schmehl, R. H. Photophysical properties of rhenium(I) diimine complexes: observation of room-temperature intraligand phosphorescence. J. Am. Chem. Soc. 1991, 113, 389–394; https://doi.org/10.1021/ja00002a001.Search in Google Scholar

9. Domínguez, S. E., Alborés, P., Fagalde, F. Photoinduced linkage isomerization in new rhenium(I) tricarbonyl complexes coordinated to N-nitrite and O-nitrite. Polyhedron 2014, 67, 471–480; https://doi.org/10.1016/j.poly.2013.10.002.Search in Google Scholar

10. Pizarro, N., Saldías, M., Galaz, B., Donoso, D., Muñoz, C., Palominos, F., Ortiz, C., Vega, A. A potential novel and general route for bromide replacement in diimine ReI tricarbonyl complexes leading to carboxylates. Polyhedron 2022, 227, 116127; https://doi.org/10.1016/j.poly.2022.116127.Search in Google Scholar

11. Wrighton, M., Morse, D. L. Nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(I) and related complexes. J. Am. Chem. Soc. 1974, 96, 998–1003; https://doi.org/10.1021/ja00811a008.Search in Google Scholar

12. Paul, L. A., Röttcher, N. C., Zimara, J., Borter, J. H., Du, J. P., Schwarzer, D., Mata, R. A., Siewert, I. Photochemical properties of Re(CO)3 complexes with and without a local proton source and implications for CO2 reduction catalysis. Organometallics 2020, 39, 2405–2414; https://doi.org/10.1021/acs.organomet.0c00240.Search in Google Scholar

13. Carron, S., Bloemen, M., Vander Elst, L., Laurent, S., Verbiest, T., Parac-Vogt, T. N. Potential theranostic and multimodal iron oxide nanoparticles decorated with rhenium–bipyridine and –phenanthroline complexes. J. Mater. Chem. B 2015, 3, 4370–4376; https://doi.org/10.1039/c5tb00460h.Search in Google Scholar PubMed

14. Thorp-Greenwood, F. L. An introduction to organometallic complexes in fluorescence cell imaging: current applications and future prospects. Organometallics 2012, 31, 5686–5692; https://doi.org/10.1021/om3004477.Search in Google Scholar

15. Fernández-Moreira, V., Thorp-Greenwood, F. L., Coogan, M. P. Application of d6 transition metal complexes in fluorescence cell imaging. Chem. Commun. 2010, 46, 186–202; https://doi.org/10.1039/b917757d.Search in Google Scholar PubMed

16. Lo, K. K. W., Louie, M. W., Zhang, K. Y. Design of luminescent iridium(III) and rhenium(I) polypyridine complexes as in vitro and in vivo ion, molecular and biological probes. Coord. Chem. Rev. 2010, 254, 2603–2622; https://doi.org/10.1016/j.ccr.2010.01.014.Search in Google Scholar

17. Balasingham, R. G., Coogan, M. P., Thorp-Greenwood, F. L. Complexes in context: attempting to control the cellular uptake and localisation of rhenium fac-tricarbonyl polypyridyl complexes. Dalton Trans. 2011, 40, 11663–11674; https://doi.org/10.1039/c1dt11219h.Search in Google Scholar PubMed

18. Bartholoma, M. D., Louie, A. S., Valliant, J. F., Zubieta, J. Technetium and gallium derived radiopharmaceuticals: comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chem. Rev. 2010, 110, 2903–2920; https://doi.org/10.1021/cr1000755.Search in Google Scholar PubMed

19. Ramoba, L. V., Alexander, O. T., Visser, H. G., Manicum, A. L. E. The crystal structure of fac-tricarbonyl (1,10-phenanthroline-κ2N,N′)-(pyrazole-κN) rhenium(I) nitrate, C18H12O3N4Re. Z. Kristallogr. N. Cryst Struct. 2020, 235, 1203–1205; https://doi.org/10.1515/ncrs-2020-0249.Search in Google Scholar

20. Moremi, M. J., Alexander, O. T., Vatsha, B., Makgopa, K., Manicum, A. L. E. The crystal structure of fac-tricarbonyl (4,4-dimethyl-2,2-dipyridyl-κ2N,N′-(pyrazole-κN) rhenium (I) nitrate, C18H16O3N4Re. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 33–35; https://doi.org/10.1515/ncrs-2020-0458.Search in Google Scholar

21. Alberto, R., Schibli, R., Waibel, R., Abram, U., Schubiger, A. P. Basic aqueous chemistry of [M(OH2)3(CO)3]+ (M = Re, Tc) directed towards radiopharmaceutical application. Coord. Chem. Rev. 1999, 190, 901–919; https://doi.org/10.1016/s0010-8545(99)00128-9.Search in Google Scholar

22. Manicum, A. L., Schutte-Smith, M., Visser, H. G., Pretorius, C., Roodt, A. Crystal structure of tetraethylammonium fac-tricarbonyl(hexafluoroacetylacetonato-κ2O,O′)-(nitrato-κO) rhenium (I), C16H21O8N2F6Re. Z. Kristallogr. N. Cryst Struct. 2016, 231, 263–266; https://doi.org/10.1515/ncrs-2015-0115.Search in Google Scholar

23. Manicum, A. L., Alexander, O., Schutte-Smith, M., Visser, H. G. Synthesis, characterization and substitution reactions of fac-[Re(O,O′-bid)(CO)3(P)] complexes, using the “2 + 1” mixed ligand model. J. Mol. Struct. 2020, 1209, 127953; https://doi.org/10.1016/j.molstruc.2020.127953.Search in Google Scholar

Received: 2023-03-24
Accepted: 2023-04-14
Published Online: 2023-05-09
Published in Print: 2023-08-28

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of a polymorph of potassium picrate, C6H2KN3O7
  4. The crystal structure of (1E,2E)-1,2-bis(quinolin-2-ylmethylene)hydrazine, C20H14N4
  5. 5-Amino-2-chloro-4-fluoro-N-(N-isopropyl-N-methylsulfamoyl) benzamide, C11H15O3ClFN3S
  6. Crystal structure of trans-N 1,N 8-bis(2-cyanoethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, C22H42N6
  7. The crystal structure of [N-{[2-(oxy)-4-methoxyphenyl](phenyl)methylidene}alaninato]-diphenyl-silicon(IV) – chloroform (1/1), C29H25NO4Si·CHCl3
  8. Crystal structure of tetracarbonyl-{μ-[N-(diphenylphosphanyl)-N,P,P-triphenylphosphinous amide]}-bis[μ-(phenylmethanethiolato)]diiron (Fe–Fe), C48H39Fe2NO4P2S2
  9. Crystal structure of baryte from Mine du Pradet (France)
  10. The crystal structure of [(2,2′-bipyridine-6-carboxylato-κ3 N,N,O)-(6-phenylpyridine-2-carboxylate-κ2 N,O)copper(II)] monohydrate, C23H17N3O5Cu
  11. Crystal structure of bis(μ-benzeneselenolato)-(μ-[N-benzyl-N-(diphenylphosphanyl)-P,P-diphenylphosphinous amide])-tetracarbonyl diiron (Fe–Fe), C47H37Fe2NO4P2Se2
  12. The crystal structure of diaqua-methanol-κ1 O- (3-thiophenecarboxylato-κO)-(2,2′-dipyridyl-κ2 N,N′)manganese(II) 3-thiophenecarboxylate, C21H22N2O7S2Mn
  13. Crystal structure of catena-poly[tetrakis(butyl)-μ2-2-((oxido(phenyl)methylene)hydrazineylidene)propanoato-κ4 O:O,O′,N-μ2-2-((oxido(phenyl)methylene)hydrazineylidene)propanoato-κ4 O,N,O′:N′-ditin(IV)], C34H50N6O6Sn2
  14. Crystal structure of 4-chloro-N′-[(1E)-(2-nitrophenyl)methylidene]benzohydrazide, C14H10ClN3O3
  15. The crystal structure of 3-(1′-deoxy-3′,5′-O-dibenzy-β-d-ribosyl)adenine dichloromethane solvate, C49H52Cl2N10O6
  16. The crystal structure of (Z)-4-amino-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H17N3O
  17. The co-crystal structure of etoricoxib–phthalic acid (1/1), C18H15ClN2O2S·C8H6O4
  18. Crystal structure of (glycinto-κ 2 O,N )-[5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ 4 N,N ,N ,N ]nickel(II) perchlorate monohydrate C18H42ClN5NiO7
  19. The crystal structure of catena-poly[bis(1-ethylimidazole-k1 N)-(μ 2-benzene-1-carboxyl-3,5-dicarboxylato-κ 2 O, O′)zinc(II)], C19H20N4O6Zn
  20. Crystal structure of 3-(thiazol-2-ylcarbamoyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C11H12N2O4S
  21. Rietveld structure analysis of keatite, a rare, metastable SiO2 polymorph
  22. Crystal structure of catena-poly[(μ2-isophthalato-k3 O,O′:O″)(4-(4-pyridyl)-2,5-dipyrazylpyridine-k3 N,N′,N″)cobalt(II)] trihydrate C26H22N6O7Co1
  23. Crystal structure of 3,5–di-O-benzoyl-1,2-O-isopropylidene-α–D-ribose, C22H22O7
  24. The crystal structure of fac-tricarbonyl(6-bromo-2,2-bipyridine-κ2 N,N)-(nitrato-κO)rhenium(I), C13H7BrN3O6Re
  25. The crystal structure of (E)-N′-(4-hydroxy-3-methoxybenzylidene)-2-naphthohydrazide monohydrate, C19H18N2O4
  26. The crystal structure of 5,5′-diselanediyl-bis(2-hydroxybenzaldehyde), C14H10O4Se2
  27. The crystal structure of catena-poly[diaqua-m2-dicyanido-κ2 C:N-dicyanido-κ1 C-bis(4-(pyridin-4-yl)benzaldehyde-κ1N)iron(II)-platinum(II), C28H22N6O4PtFe
  28. Redetermination of the crystal structure of 5,14-dihydro-6,17-dimethyl-8,15-diphenyldibenzo(b,i)(1,4,8,11)tetra-azacyclotetradecine, C32H28N4
  29. Crystal structure of poly[(μ3-2-(3,5-dicarboxyphenyl) benzimidazole-6-carboxylato-κ4O:O:O′:O″)lead(II)] monohydrate, C16H10N2O7Pb
  30. The crystal structure of fac-tricarbonyl(2-pyridin-2-yl-quinoline-κ2 N,N′)-(pyrazole-κN)rhenium(I)nitrate, C20H14N4O3ReNO3
  31. Crystal structure of dibromo-dicarbonyl-bis(tricyclohexylphosphine)-osmium(II) dichloromethane solvate, C38H66Br2O2OsP2
  32. Crystal structure of poly[bis(μ 2-2,6-bis(1-imidazoly)pyridine-κ 2 N:N′)copper(II)] diperchlorate dihydrate, C22H22Cl2CuN10O10
  33. The crystal structure of fac-tricarbonyl(N-benzoyl-N,N-cyclohexylmethylcarbamimidothioato-κ2 S,O)-(pyridine-κN)rhenium(I), C23H24N3O4ReS
  34. Crystal structure of (E)-7-fluoro-2-(4-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O
  35. Synthesis and crystal structure of 1-((3R,10S,13S, 17S)-3-((2-methoxyphenyl)amino)-10,13-dimethylhexadecahydro-1H-cyclopenta[α]phenanthren-17-yl)ethan-1-one, C28H41NO2
  36. The crystal structure of fac-tricarbonyl((pyridin-2-yl)methanamino-κ2 N,N′)-((pyridin-2-yl)methanamino-κN)rhenium(I) nitrate, C15H16O3N4Re
  37. The crystal structure of (1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)-N-((1-(4-vinylbenzyl)-1H-benzo[d]imidazol-2-yl)methyl)methanamine-κ 4 N,N′,N″,N‴)tris(nitrato-kO,O′)-erbium(III), C29H27ErN8O9
  38. Crystal structure of tetracene-5,12-dione, C18H10O2
  39. Crystal structure of (3R,3aS,6R,6aR)-6-hexyl-3-methyltetrahydrofuro[3,4-b]furan-2,4-dione, C13H20O4
  40. The crystal structure of N1,N3-bis((E)-thiophen-2-ylmethylene)isophthalohydrazide monohydrate, C18H16N4O3S2
  41. Crystal structure of methyl ((4-aminobenzyl)sulfonyl)-L-prolinate, C13H18N2O4S
  42. Crystal structure of (E)-3-(3-methoxybenzylidene)benzofuran-2(3H)-one, C16H12O3
  43. Synthesis and crystal structure (E)-1-(4-bromo-2-hydroxyphenyl)-3-(dimethylamino)prop-2-en-1-one, C11H12BrNO2
  44. Synthesis and crystal structure of (S,E)-4-hydroxy-3-(2-((4aR,6aS,7R,10aS,10bR)-3,3,6a,10b-tetramethyl-8-methylenedecahydro-1H-naphtho[2,1-d][1,3]dioxin-7-yl)ethylidene)dihydrofuran-2(3H)-one, C23H34O5
  45. The crystal structure of N,N′-(1,2-phenylene)bis (2-((2-oxopropyl)selanyl)benzamide), C26H24N2O4Se2
  46. The crystal structure of 1-ethyl-2-nitro-imidazole oxide, C5H7N3O3
  47. The crystal structure of 2-(2-fluorophenyl)naphtho[2,1-d]thiazole, C17H10FNS
  48. Crystal structure of (E)-2,4-di-tert-butyl-6-(((2-fluorophenyl)imino) methyl)phenol, C21H26FNO
  49. Synthesis and crystal structure of 3-methyl-2-(methylthio)-4H-chromen-4-one, C12H12O2S
  50. Crystal structure of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-5,10-dione, C14H4O2S4
  51. The crystal structure of dimethyl 2,2ʹ-((adamantane-1,3-diylbis(4,1-phenylene)) bis(oxy))diacetate, C28H32O6
  52. The crystal structure of N-(6-chloro-2-methyl-2H-indazol-5-yl)acetamide, C10H10ClN3O
  53. Crystal structure of triaqua-(5-bromoisophthalato-κ1 O)-(2,2′-bipyridine-κ2 N:N′)nickel(II) hydrate, C18H19BrN2NiO8
  54. The crystal structure of 2-amino-4-carboxypyridin-1-ium perchlorate, C6H7ClN2O6
  55. The crystal structure of catena-poly[5-aminonicotinic acid-k1 N-m2-bromido-copper(I)], Cu(C6N2H6O2)Br
  56. The crystal structure of 2,2-bis(3-methoxyphenyl)-1-tosyl-1,2-dihydro- 4,3λ4  -[1,3,2]diazaborolo[4,5,1-ij]quinoline - dichloromethane (1/1)
  57. The crystal structure of catena-poly[bis(6-phenylpyridine-2-carboxylato-κ2 N,O)-(μ2-4,4′-bipyridne-κ2 N:N)cadmium(II)], C34H24N4O4Cd
  58. The crystal structure of 5,7-dinitropyrazolo[5,1-b]quinazolin-9(4H)-one, C10H5N5O5
  59. Crystal structure of rac-1,8-bis(2-carbamoylethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, C22H46N6O2
  60. The crystal structure of (E)-N -(2-bromobenzylidene)-2-naphthohydrazide, C36H26Br2N4O2
  61. The crystal structure of 5-nitronaphthoquinone, C10H5NO4
  62. The crystal structure of (S, R p )-4–benzhydrylideneamino-12-(4-tert-butyl oxazolin-2-yl)[2.2]paracyclophane, C36H36N2O
  63. Synthesis and crystal structure of 2-(2-oxo-2-(o-tolyl)ethyl)-4H-chromen-4-one, C18H14O3
  64. Crystal structure of 2-(thiazol-2-yl)hexahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione, C11H10N2O3S
  65. Crystal structure of N-(diaminomethylene)-1-(dimethylamino)-1-iminiomethanaminium dichloride, C4H13Cl2N5
  66. Crystal structure of poly[(μ3-3, 5-dichloro-2-hydroxy-benzoato-κ4 Cl,O:O′:O″) silver(I)], C7H3AgCl2O3
  67. The crystal structure of tetrakis(1-isopropylimidazole-κ1 N)-[μ2- imidazole-4,5-dicarboxylato-κ4 O,N,O′,N′)]- trioxido-divanadium, C29H41N10O7V2
  68. Crystal structure of catena-[(μ3-bromido)-(1H-1,2,4-triazol-1-yl)benzoato-κ1 N)copper(I)], C9H7BrCuN3O2
  69. The crystal structure of (E)-4-fluoro-N′-(1-(2-hydroxyphenyl)propylidene)benzohydrazide, C16H15FN2O2
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0141/html
Scroll to top button