Home Crystal structure of 4-chloro-N′-[(1E)-(2-nitrophenyl)methylidene]benzohydrazide, C14H10ClN3O3
Article Open Access

Crystal structure of 4-chloro-N′-[(1E)-(2-nitrophenyl)methylidene]benzohydrazide, C14H10ClN3O3

  • Lamya H. Al-Wahaibi , Olivier Blacque , Edward R. T. Tiekink and Ali A. El-Emam ORCID logo EMAIL logo
Published/Copyright: April 27, 2023

Abstract

C14H10ClN3O3, triclinic, P1 (no. 1), a = 4.8813(2) Å, b = 6.7806(2) Å, c = 10.3135(2) Å, α =  98.101 ( 2 ) , β =  94.174 ( 2 ) , γ =  97.612 ( 3 ) , V = 333.515(18) Å3, Z = 1, R g t (F) = 0.0270, w R r e f (F2) = 0.0743, T = 160 K.

CCDC no.: 2245655

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless plate
Size: 0.19 × 0.09 × 0.03 mm
Wavelength:

μ:
Cu Kα radiation (1.54184 Å)

2.68 mm−1
Diffractometer, scan mode:

θ max, completeness:
XtaLAB Synergy,

74.4°, >99 %
N(hkl)measured, N(hkl)unique, R int: 6795, 2120, 0.020
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2092
N(param)refined: 193
Programs: CrysAlisPRO [1], SHELX [2, 3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Cl1 0.77208 (13) 1.39448 (9) 0.90495 (7) 0.0486 (2)
O1 0.0578 (3) 0.5145 (2) 0.61964 (18) 0.0352 (4)
O2 0.8047 (5) 0.2378 (3) 0.2036 (2) 0.0578 (6)
O3 0.9425 (4) −0.0212 (3) 0.0955 (2) 0.0492 (5)
N1 0.4826 (3) 0.4567 (3) 0.56303 (19) 0.0268 (4)
H1N 0.663 (3) 0.492 (4) 0.582 (3) 0.032*
N2 0.3741 (3) 0.2800 (3) 0.48170 (19) 0.0270 (4)
N3 0.7928 (4) 0.0562 (3) 0.1714 (2) 0.0358 (4)
C1 0.3092 (4) 0.5688 (3) 0.6255 (2) 0.0255 (4)
C2 0.5537 (4) 0.1909 (3) 0.4213 (2) 0.0260 (4)
H2 0.743183 0.249572 0.429985 0.031*
C3 0.4399 (4) 0.7672 (3) 0.6998 (2) 0.0245 (4)
C4 0.3191 (4) 0.8517 (4) 0.8089 (2) 0.0313 (5)
H4 0.164580 0.776910 0.839375 0.038*
C5 0.4216 (5) 1.0430 (4) 0.8733 (2) 0.0348 (5)
H5 0.340023 1.098837 0.948294 0.042*
C6 0.6444 (5) 1.1525 (3) 0.8273 (2) 0.0320 (5)
C7 0.7701 (4) 1.0723 (3) 0.7187 (2) 0.0292 (5)
H7 0.923578 1.148343 0.688332 0.035*
C8 0.6676 (4) 0.8804 (3) 0.6561 (2) 0.0274 (4)
H8 0.752389 0.823948 0.582365 0.033*
C9 0.4603 (4) −0.0045 (3) 0.3380 (2) 0.0253 (4)
C10 0.5801 (4) −0.0767 (3) 0.2249 (2) 0.0278 (4)
C11 0.5018 (5) −0.2679 (4) 0.1555 (2) 0.0349 (5)
H11 0.590042 −0.311465 0.079621 0.042*
C12 0.2921 (6) −0.3956 (4) 0.1983 (3) 0.0386 (5)
H12 0.236011 −0.527847 0.151982 0.046*
C13 0.1659 (5) −0.3291 (4) 0.3082 (3) 0.0343 (5)
H13 0.020480 −0.415671 0.336644 0.041*
C14 0.2485 (4) −0.1375 (3) 0.3779 (2) 0.0299 (5)
H14 0.160278 −0.095539 0.454084 0.036*

1 Source of material

A mixture of 4-chlorobenzohydrazide (0.85 g, 5.0 mmol) and 2-nitrobenzaldehyde (0.76 g, 5.0 mmol), in ethanol (8 mL), was heated under reflux for 2 h. On cooling, the precipitated crude product was filtered, washed with cold ethanol, dried and recrystallised from ethanol to yield 1.29 g (85 %) of (I) as colourless plates. Melting point: 499–501 K (uncorrected). 1H NMR (DMSO-d 6, 500.13 MHz): δ 11.55 (s, 1H, NH), 8.85 (s, 1H, CH=N), 8.09 (d, 1H, Ar–H, J = 6.8 Hz), 7.92–7.96 (m, 3H, Ar–H) and 7.55–7.69 (m, 4H, Ar–H). 13C NMR (DMSO-d 6, 125.76 MHz): δ 166.24 (C=O), 143.68 (CH=N), 146.30, 138.20, 134.0, 132.82, 131.94, 130.89, 129.89, 128.24, 127.98, 123.54 (Ar–C). Analysis (%) for C14H10ClN3O3 (303.70): C, 55.35 (Calc. 55.37); H, 3.36 (Calc. 3.32); N, 13.68 (Calc. 13.84).

2 Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with U iso (H) = 1.2U eq (C). The N-bound H atoms were located in a difference map and refined with N–H = 0.88 ± 0.01 and with U iso (H) = 1.2U eq (N).

3 Comment

N ʹ -Arylidene hydrazide derivatives have been utilised as important starting materials in the synthesis of various heterocyclic compounds having diverse biological activities [5], [6], [7], [8]. Herein, the crystal and molecular structures of the title  N ʹ -arylidene hydrazide derivative, (I), are described, complemented with an analysis of the calculated Hirshfeld surfaces and a comparison with the isomorphous bromo derivative [9].

The molecular structure of (I) is shown in the figure (50% probability ellipsoids). The central residue, comprising the C1, C2, N1, N2 and O1 atoms is close to planar, exhibiting an r.m.s. deviation of 0.0180 Å; the maximum deviations from the least-squares plane through these atoms are C1 [0.0237(14) Å] and N1 [0.0247(14) Å] atoms which lie to opposite sides of the plane. Each of the attached chlorophenyl and nitrophenyl rings is rotated out of the plane through the central residue, forming dihedral angles of 32.54(11) and 36.61 ( 11 ) , respectively. A disrotatory relationship exists between the phenyl rings as indicated by the dihedral angle between them of 4.08 ( 15 ) . The nitro group is twisted out of the plane through the ring to which it is connected, forming a dihedral angle of 20.9 ( 3 ) . The constituent atoms of the amide group adopt an trans-conformation, and the configuration about the C2=N2 imine bond [1.279(3) Å] is E.

In the crystallographic literature, there is the isostructural bromo derivative [9], (II), along with the parent nitro compound [10], (III), available for comparison; the parent nitro compound is not a hydrate as indicated in the title of the publication [10]. An overlay diagram (not shown) of (I)-(III) shows (I) and (II) to be virtually superimposable. However, minor differences are evident for (III), most notably in the opposite orientation of the nitro group; the dihedral angles between the outer rings in (II) and (III) are 4.13(9) and 1.45 ( 8 ) , respectively, cf. 4.08 ( 15 ) for (I).

In the molecular packing, amide-N–H⃛O(amide) hydrogen bonds feature in linear chains along the a-axis [N1–H1n⃛O1 i : H1n⃛O1 i  = 1.920(16) Å, N1⃛O1 i  = 2.790(2) Å with angle at H1n =  169 ( 3 ) for symmetry operation (i): 1 + x, y, z]. Connections between chains are of the type nitrophenyl-C–H⃛Cl [C11–H11⃛Cl1 ii : H11⃛Cl1 ii  = 2.77 Å, C11⃛Cl1 ii  = 3.645(2) Å with angle at H11 =  153 for (ii): x, 2 + y, 1 + z]. Bifurcated nitrophenyl-C–H⃛O(nitro) interactions occur along the b-axis [C12–H12⃛O2 iii : H12⃛O2 iii  = 2.60 Å, C12⃛O2 iii  = 3.215(4) Å with angle at H12 =  123 and C12–H13⃛O2 iii : H13⃛O2 iii  = 2.60 Å, C12⃛O2 iii  = 3.218(3) Å with angle at H13 =  123 for (iii): 1 + x, 1 + y, z] whereby the nitro atom forms two weak contacts with adjacent hydrogen atoms on the nitrophenyl ring.

An analysis of the calculated Hirshfeld surfaces for (I) and isostructural (II) were also conducted employing CrystalExplorer [11] following literature precedents [12]. This analysis on the packing in the crystal of (I) indicates a wide range of significant surface contacts with 83.5 % of these involving hydrogen. Thus, in descending order of significance, O⃛H/H⃛O contacts contributed 25.0 % of all contacts followed by H⃛H [19.7 %], C⃛H/H⃛C [19.5 %], Cl⃛H/H⃛Cl [13.6 %] and N⃛H/H⃛N [5.7 %]. Significant contributions were also made by O⃛C/C⃛O [6.1 %] and N⃛C/C⃛N [4.1 %] contacts, with smaller contributions from C⃛C [2.0 %], Cl⃛O/O⃛Cl [2.0 %] and Cl⃛C/C⃛Cl [1.6 %] contacts. The comparable analysis performed for (II) revealed differences of equal to or less than 0.4 % to smaller values for all contacts with the notable exception being a plus 1.3 % increase for Br⃛H/H⃛Br contacts, an observation consistent with the larger size of the halide atom in (II); a 0.3 % increase for O⃛H/H⃛O contacts is also noted.


Corresponding author: Ali A. El-Emam, Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt, E-mail:

Funding source: Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Award Identifier / Grant number: Abdulrahman University Researchers Supporting Project No. (PNURSP2023R3),

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project No. (PNURSP2023R3), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CrysAlisPro; Rigaku Corporation: Oxford, UK, 2019.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and SHELXL for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Yu, W., Huang, G., Zhang, Y., Liu, H., Dong, L., Yu, X., Li, Y., Chang, J. I2-Mediated oxidative C–O bond formation for the synthesis of 1,3,4-oxadiazoles from aldehydes and hydrazides. J. Org. Chem. 2013, 78, 10337–10343; https://doi.org/10.1021/jo401751h.Search in Google Scholar PubMed

6. Guin, S., Ghosh, T., Rout, S. K., Banerjee, A., Patel, B. K. Cu(II) catalyzed imine C–H functionalization leading to synthesis of 2,5-substituted 1,3,4-oxadiazoles. Org. Lett. 2011, 13, 5976–5979; https://doi.org/10.1021/ol202409r.Search in Google Scholar PubMed

7. Karolina, J., Agnieszka, K. Oxidative cyclization of N-aroylhydrazones to 2-(2-arylethenyl)-1,3,4-oxadiazoles using DDQ as an efficient oxidant. Tetrahedron Lett. 2015, 56, 5878–5881; https://doi.org/10.1016/j.tetlet.2015.09.018.Search in Google Scholar

8. El-Emam, A. A., Alrashood, K. A., Al-Omar, M. A., Al-Tamimi, A. M. S. Synthesis and antimicrobial activity of N′-heteroarylidene-1-adamantylcarbohydrazides and (+-)-2-(1-adamantyl)-4-acetyl-5-[5-(4-substituted phenyl-3-isoxazolyl)]-1,3,4-oxadiazolines. Molecules 2012, 17, 3475–3483; https://doi.org/10.3390/molecules17033475.Search in Google Scholar PubMed PubMed Central

9. Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M., Liu, J.-B. (E)-4-Bromo-N′-(2-nitrobenzylidene)benzohydrazide. Acta Crystallogr. 2009, E65, o508; https://doi.org/10.1107/s1600536809002165.Search in Google Scholar

10. Guo, H.-M. 2-Nitrobenzaldehyde benzoylhydrazone monohydrate. Acta Crystallogr. 2007, E63, o2736; https://doi.org/10.1107/s1600536807020387.Search in Google Scholar

11. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., Spackman, M. A. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011; https://doi.org/10.1107/s1600576721002910.Search in Google Scholar PubMed PubMed Central

12. Tan, S. L., Jotani, M. M., Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. 2019, E75, 308–318; https://doi.org/10.1107/s2056989019001129.Search in Google Scholar

Received: 2023-03-16
Accepted: 2023-04-13
Published Online: 2023-04-27
Published in Print: 2023-08-28

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of a polymorph of potassium picrate, C6H2KN3O7
  4. The crystal structure of (1E,2E)-1,2-bis(quinolin-2-ylmethylene)hydrazine, C20H14N4
  5. 5-Amino-2-chloro-4-fluoro-N-(N-isopropyl-N-methylsulfamoyl) benzamide, C11H15O3ClFN3S
  6. Crystal structure of trans-N 1,N 8-bis(2-cyanoethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, C22H42N6
  7. The crystal structure of [N-{[2-(oxy)-4-methoxyphenyl](phenyl)methylidene}alaninato]-diphenyl-silicon(IV) – chloroform (1/1), C29H25NO4Si·CHCl3
  8. Crystal structure of tetracarbonyl-{μ-[N-(diphenylphosphanyl)-N,P,P-triphenylphosphinous amide]}-bis[μ-(phenylmethanethiolato)]diiron (Fe–Fe), C48H39Fe2NO4P2S2
  9. Crystal structure of baryte from Mine du Pradet (France)
  10. The crystal structure of [(2,2′-bipyridine-6-carboxylato-κ3 N,N,O)-(6-phenylpyridine-2-carboxylate-κ2 N,O)copper(II)] monohydrate, C23H17N3O5Cu
  11. Crystal structure of bis(μ-benzeneselenolato)-(μ-[N-benzyl-N-(diphenylphosphanyl)-P,P-diphenylphosphinous amide])-tetracarbonyl diiron (Fe–Fe), C47H37Fe2NO4P2Se2
  12. The crystal structure of diaqua-methanol-κ1 O- (3-thiophenecarboxylato-κO)-(2,2′-dipyridyl-κ2 N,N′)manganese(II) 3-thiophenecarboxylate, C21H22N2O7S2Mn
  13. Crystal structure of catena-poly[tetrakis(butyl)-μ2-2-((oxido(phenyl)methylene)hydrazineylidene)propanoato-κ4 O:O,O′,N-μ2-2-((oxido(phenyl)methylene)hydrazineylidene)propanoato-κ4 O,N,O′:N′-ditin(IV)], C34H50N6O6Sn2
  14. Crystal structure of 4-chloro-N′-[(1E)-(2-nitrophenyl)methylidene]benzohydrazide, C14H10ClN3O3
  15. The crystal structure of 3-(1′-deoxy-3′,5′-O-dibenzy-β-d-ribosyl)adenine dichloromethane solvate, C49H52Cl2N10O6
  16. The crystal structure of (Z)-4-amino-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H17N3O
  17. The co-crystal structure of etoricoxib–phthalic acid (1/1), C18H15ClN2O2S·C8H6O4
  18. Crystal structure of (glycinto-κ 2 O,N )-[5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ 4 N,N ,N ,N ]nickel(II) perchlorate monohydrate C18H42ClN5NiO7
  19. The crystal structure of catena-poly[bis(1-ethylimidazole-k1 N)-(μ 2-benzene-1-carboxyl-3,5-dicarboxylato-κ 2 O, O′)zinc(II)], C19H20N4O6Zn
  20. Crystal structure of 3-(thiazol-2-ylcarbamoyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C11H12N2O4S
  21. Rietveld structure analysis of keatite, a rare, metastable SiO2 polymorph
  22. Crystal structure of catena-poly[(μ2-isophthalato-k3 O,O′:O″)(4-(4-pyridyl)-2,5-dipyrazylpyridine-k3 N,N′,N″)cobalt(II)] trihydrate C26H22N6O7Co1
  23. Crystal structure of 3,5–di-O-benzoyl-1,2-O-isopropylidene-α–D-ribose, C22H22O7
  24. The crystal structure of fac-tricarbonyl(6-bromo-2,2-bipyridine-κ2 N,N)-(nitrato-κO)rhenium(I), C13H7BrN3O6Re
  25. The crystal structure of (E)-N′-(4-hydroxy-3-methoxybenzylidene)-2-naphthohydrazide monohydrate, C19H18N2O4
  26. The crystal structure of 5,5′-diselanediyl-bis(2-hydroxybenzaldehyde), C14H10O4Se2
  27. The crystal structure of catena-poly[diaqua-m2-dicyanido-κ2 C:N-dicyanido-κ1 C-bis(4-(pyridin-4-yl)benzaldehyde-κ1N)iron(II)-platinum(II), C28H22N6O4PtFe
  28. Redetermination of the crystal structure of 5,14-dihydro-6,17-dimethyl-8,15-diphenyldibenzo(b,i)(1,4,8,11)tetra-azacyclotetradecine, C32H28N4
  29. Crystal structure of poly[(μ3-2-(3,5-dicarboxyphenyl) benzimidazole-6-carboxylato-κ4O:O:O′:O″)lead(II)] monohydrate, C16H10N2O7Pb
  30. The crystal structure of fac-tricarbonyl(2-pyridin-2-yl-quinoline-κ2 N,N′)-(pyrazole-κN)rhenium(I)nitrate, C20H14N4O3ReNO3
  31. Crystal structure of dibromo-dicarbonyl-bis(tricyclohexylphosphine)-osmium(II) dichloromethane solvate, C38H66Br2O2OsP2
  32. Crystal structure of poly[bis(μ 2-2,6-bis(1-imidazoly)pyridine-κ 2 N:N′)copper(II)] diperchlorate dihydrate, C22H22Cl2CuN10O10
  33. The crystal structure of fac-tricarbonyl(N-benzoyl-N,N-cyclohexylmethylcarbamimidothioato-κ2 S,O)-(pyridine-κN)rhenium(I), C23H24N3O4ReS
  34. Crystal structure of (E)-7-fluoro-2-(4-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O
  35. Synthesis and crystal structure of 1-((3R,10S,13S, 17S)-3-((2-methoxyphenyl)amino)-10,13-dimethylhexadecahydro-1H-cyclopenta[α]phenanthren-17-yl)ethan-1-one, C28H41NO2
  36. The crystal structure of fac-tricarbonyl((pyridin-2-yl)methanamino-κ2 N,N′)-((pyridin-2-yl)methanamino-κN)rhenium(I) nitrate, C15H16O3N4Re
  37. The crystal structure of (1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)-N-((1-(4-vinylbenzyl)-1H-benzo[d]imidazol-2-yl)methyl)methanamine-κ 4 N,N′,N″,N‴)tris(nitrato-kO,O′)-erbium(III), C29H27ErN8O9
  38. Crystal structure of tetracene-5,12-dione, C18H10O2
  39. Crystal structure of (3R,3aS,6R,6aR)-6-hexyl-3-methyltetrahydrofuro[3,4-b]furan-2,4-dione, C13H20O4
  40. The crystal structure of N1,N3-bis((E)-thiophen-2-ylmethylene)isophthalohydrazide monohydrate, C18H16N4O3S2
  41. Crystal structure of methyl ((4-aminobenzyl)sulfonyl)-L-prolinate, C13H18N2O4S
  42. Crystal structure of (E)-3-(3-methoxybenzylidene)benzofuran-2(3H)-one, C16H12O3
  43. Synthesis and crystal structure (E)-1-(4-bromo-2-hydroxyphenyl)-3-(dimethylamino)prop-2-en-1-one, C11H12BrNO2
  44. Synthesis and crystal structure of (S,E)-4-hydroxy-3-(2-((4aR,6aS,7R,10aS,10bR)-3,3,6a,10b-tetramethyl-8-methylenedecahydro-1H-naphtho[2,1-d][1,3]dioxin-7-yl)ethylidene)dihydrofuran-2(3H)-one, C23H34O5
  45. The crystal structure of N,N′-(1,2-phenylene)bis (2-((2-oxopropyl)selanyl)benzamide), C26H24N2O4Se2
  46. The crystal structure of 1-ethyl-2-nitro-imidazole oxide, C5H7N3O3
  47. The crystal structure of 2-(2-fluorophenyl)naphtho[2,1-d]thiazole, C17H10FNS
  48. Crystal structure of (E)-2,4-di-tert-butyl-6-(((2-fluorophenyl)imino) methyl)phenol, C21H26FNO
  49. Synthesis and crystal structure of 3-methyl-2-(methylthio)-4H-chromen-4-one, C12H12O2S
  50. Crystal structure of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-5,10-dione, C14H4O2S4
  51. The crystal structure of dimethyl 2,2ʹ-((adamantane-1,3-diylbis(4,1-phenylene)) bis(oxy))diacetate, C28H32O6
  52. The crystal structure of N-(6-chloro-2-methyl-2H-indazol-5-yl)acetamide, C10H10ClN3O
  53. Crystal structure of triaqua-(5-bromoisophthalato-κ1 O)-(2,2′-bipyridine-κ2 N:N′)nickel(II) hydrate, C18H19BrN2NiO8
  54. The crystal structure of 2-amino-4-carboxypyridin-1-ium perchlorate, C6H7ClN2O6
  55. The crystal structure of catena-poly[5-aminonicotinic acid-k1 N-m2-bromido-copper(I)], Cu(C6N2H6O2)Br
  56. The crystal structure of 2,2-bis(3-methoxyphenyl)-1-tosyl-1,2-dihydro- 4,3λ4  -[1,3,2]diazaborolo[4,5,1-ij]quinoline - dichloromethane (1/1)
  57. The crystal structure of catena-poly[bis(6-phenylpyridine-2-carboxylato-κ2 N,O)-(μ2-4,4′-bipyridne-κ2 N:N)cadmium(II)], C34H24N4O4Cd
  58. The crystal structure of 5,7-dinitropyrazolo[5,1-b]quinazolin-9(4H)-one, C10H5N5O5
  59. Crystal structure of rac-1,8-bis(2-carbamoylethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, C22H46N6O2
  60. The crystal structure of (E)-N -(2-bromobenzylidene)-2-naphthohydrazide, C36H26Br2N4O2
  61. The crystal structure of 5-nitronaphthoquinone, C10H5NO4
  62. The crystal structure of (S, R p )-4–benzhydrylideneamino-12-(4-tert-butyl oxazolin-2-yl)[2.2]paracyclophane, C36H36N2O
  63. Synthesis and crystal structure of 2-(2-oxo-2-(o-tolyl)ethyl)-4H-chromen-4-one, C18H14O3
  64. Crystal structure of 2-(thiazol-2-yl)hexahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione, C11H10N2O3S
  65. Crystal structure of N-(diaminomethylene)-1-(dimethylamino)-1-iminiomethanaminium dichloride, C4H13Cl2N5
  66. Crystal structure of poly[(μ3-3, 5-dichloro-2-hydroxy-benzoato-κ4 Cl,O:O′:O″) silver(I)], C7H3AgCl2O3
  67. The crystal structure of tetrakis(1-isopropylimidazole-κ1 N)-[μ2- imidazole-4,5-dicarboxylato-κ4 O,N,O′,N′)]- trioxido-divanadium, C29H41N10O7V2
  68. Crystal structure of catena-[(μ3-bromido)-(1H-1,2,4-triazol-1-yl)benzoato-κ1 N)copper(I)], C9H7BrCuN3O2
  69. The crystal structure of (E)-4-fluoro-N′-(1-(2-hydroxyphenyl)propylidene)benzohydrazide, C16H15FN2O2
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0125/html
Scroll to top button