Home The crystal structure of 5-nitronaphthoquinone, C10H5NO4
Article Open Access

The crystal structure of 5-nitronaphthoquinone, C10H5NO4

  • Claudio Barrientos , Antonio Galdámez and Silvana Moris EMAIL logo
Published/Copyright: May 31, 2023

Abstract

C10H5NO4, triclinic, P 1 (no. 2), a = 9.2564(8) Å, b = 11.0464(9) Å, c = 14.8016(12) Å, α =  110.132 ( 2 ) , β =  106.157 ( 3 ) , γ =  94.770 ( 3 ) , V = 1337.7(2) Å3, Z = 6, R g t (F) = 0.0567, w R r e f (F 2) = 0.1797, T = 296.15 K

CCDC no.: 2262885

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.10 × 0.09 × 0.06 mm
Wavelength: Mo kα radiation (0.71073 Å)
μ: 0.12 mm−1
Diffractometer, scan mode: Bruker APEX-II,
θ max, completeness: 26.4°, >99 %
N(hkl)measured, N(hkl)unique, R int: 33,183, 5487, 0.055
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 3217
N(param)refined: 406
Programs: Bruker [1], Olex2 [2, 3], SHELX [4], PLATON [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1C 0.8189 (3) −0.0060 (3) 1.0218 (2) 0.0624 (7)
C1B 0.8013 (3) 0.4327 (3) 0.94615 (18) 0.0602 (7)
C1A 0.8264 (3) 0.5575 (3) 0.6313 (2) 0.0656 (7)
C2B 0.7121 (4) 0.5346 (3) 0.9383 (2) 0.0789 (9)
H2B 0.7202 (4) 0.6053 (3) 0.9975 (2) 0.0946 (11)*
C2A 0.7252 (3) 0.5477 (3) 0.5317 (2) 0.0739 (8)
H2A 0.6624 (3) 0.6088 (3) 0.5294 (2) 0.0887 (10)*
C2C 0.8341 (4) 0.1051 (3) 1.1149 (2) 0.0784 (9)
H2C 0.9111 (4) 0.1161 (3) 1.1746 (2) 0.0941 (11)*
C3B 0.6215 (4) 0.5295 (3) 0.8510 (2) 0.0754 (9)
H3B 0.5681 (4) 0.5971 (3) 0.8504 (2) 0.0905 (10)*
C3A 0.7208 (3) 0.4552 (3) 0.4456 (2) 0.0684 (8)
H3A 0.6536 (3) 0.4525 (3) 0.3848 (2) 0.0821 (9)*
C3C 0.7426 (4) 0.1904 (3) 1.1173 (2) 0.0736 (8)
H3C 0.7567 (4) 0.2594 (3) 1.1787 (2) 0.0883 (10)*
C4B 0.6010 (3) 0.4217 (2) 0.75449 (19) 0.0553 (6)
C4A 0.8172 (3) 0.3567 (2) 0.44194 (19) 0.0529 (6)
C4C 0.6198 (3) 0.1803 (3) 1.0269 (2) 0.0604 (7)
C5C 0.5001 (3) 0.0622 (2) 0.83660 (18) 0.0482 (6)
C5B 0.6817 (3) 0.2112 (2) 0.67086 (16) 0.0457 (5)
C5A 1.0114 (3) 0.2682 (2) 0.54634 (18) 0.0512 (6)
C6B 0.7745 (3) 0.1204 (2) 0.6723 (2) 0.0588 (7)
H6B 0.7668 (3) 0.0510 (2) 0.6126 (2) 0.0706 (8)*
C6A 1.1124 (3) 0.2755 (3) 0.6368 (2) 0.0655 (7)
H6A 1.1747 (3) 0.2138 (3) 0.6380 (2) 0.0787 (9)*
C6C 0.4883 (3) −0.0350 (3) 0.7459 (2) 0.0652 (7)
H6C 0.4162 (3) −0.0413 (3) 0.6856 (2) 0.0783 (9)*
C7B 0.8786 (3) 0.1342 (3) 0.7635 (2) 0.0626 (7)
H7B 0.9438 (3) 0.0747 (3) 0.7652 (2) 0.0751 (9)*
C7A 1.1198 (3) 0.3758 (3) 0.7256 (2) 0.0714 (8)
H7A 1.1880 (3) 0.3823 (3) 0.7873 (2) 0.0857 (10)*
C7C 0.5853 (4) −0.1236 (3) 0.7454 (2) 0.0753 (8)
H7C 0.5790 (4) −0.1899 (3) 0.6843 (2) 0.0903 (10)*
C8B 0.8878 (3) 0.2347 (3) 0.85228 (19) 0.0559 (6)
H8B 0.9558 (3) 0.2410 (3) 0.91400 (19) 0.0671 (8)*
C8C 0.6910 (3) −0.1143 (3) 0.8346 (2) 0.0651 (7)
H8C 0.7549 (3) −0.1750 (3) 0.8336 (2) 0.0781 (9)*
C8A 1.0273 (3) 0.4664 (3) 0.72374 (19) 0.0628 (7)
H8A 1.0316 (3) 0.5326 (3) 0.78432 (19) 0.0753 (9)*
C9B 0.7952 (3) 0.3270 (2) 0.84968 (16) 0.0454 (5)
C9C 0.7031 (3) −0.0155 (2) 0.92578 (18) 0.0484 (6)
C9A 0.9275 (3) 0.4596 (2) 0.63195 (17) 0.0488 (6)
C10B 0.6922 (2) 0.3181 (2) 0.75754 (16) 0.0410 (5)
C10C 0.6068 (3) 0.0761 (2) 0.92869 (16) 0.0432 (5)
C10A 0.9188 (3) 0.3599 (2) 0.54060 (16) 0.0443 (5)
N1B 0.5625 (3) 0.1846 (2) 0.57292 (16) 0.0589 (6)
N1C 0.3932 (3) 0.1528 (2) 0.83158 (19) 0.0638 (6)
N1A 1.0014 (4) 0.1545 (3) 0.45486 (19) 0.0751 (7)
O1C 0.8964 (3) −0.0899 (2) 1.02191 (19) 0.0946 (8)
O1B 0.8725 (3) 0.4325 (2) 1.02835 (14) 0.0947 (8)
O1A 0.8271 (3) 0.6412 (2) 0.70996 (18) 0.1060 (9)
O2A 0.8171 (3) 0.2777 (2) 0.36167 (14) 0.0792 (6)
O2B 0.5156 (3) 0.4185 (2) 0.67494 (16) 0.0938 (8)
O2C 0.5290 (4) 0.2516 (3) 1.0325 (2) 0.1314 (12)
O3A 0.8975 (4) 0.0609 (2) 0.42725 (19) 0.1095 (9)
O3B 0.5972 (3) 0.2115 (3) 0.50857 (16) 0.0967 (8)
O3C 0.4323 (3) 0.2530 (3) 0.8264 (3) 0.1441 (14)
O4B 0.4352 (2) 0.1297 (2) 0.56118 (16) 0.0890 (7)
O4A 1.0981 (3) 0.1581 (3) 0.4153 (2) 0.1204 (10)
O4C 0.2674 (3) 0.1210 (3) 0.8296 (3) 0.1398 (13)

1 Source of materials

The 5-nitronaphtoquinone was prepared following the reported methodology [6] starting from naphthoquinone in H2SO4 in presence of NaNO3, the crude was precipitated in crushed ice to then vacuum filtered and washed with saturated NaHCO3 dissolution. The solid obtained was recrystallized in acetone and yellow block-like crystals were obtained. The structure was confirmed by melting point [7] and, 1 H NMR (400 MHz, Acetone-d6) d 8.32 (dd, J = 7.8, 1.2 Hz, 1H), 8.13 (t, J = 7.8 Hz, 1H), 8.05 (dd, J = 8.0, 1.2 Hz, 1H), 7.18 (d, J = 10.4 Hz, 1H), 7.12 (d, J = 10.4 Hz, 1H) 13 C NMR (101 MHz, Acetone) d 182.76, 181.78, 138.97, 138.41, 135.25, 133.04, 128.46, 127.56, 122.65.

2 Experimental details

Using Olex2 [2], with the olex2.solve [3] using Charge Flipping and refined with the SHELXL [4] the structure was solved. SADABS-2016/2 (Bruker, 2016/2) was used for absorption correction. Interactions were calculated using Platon [5]. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. H atoms were finally included in their calculated positions and treated as riding on their parent atom with constrained thermal parameters as U iso(H) = 1.2 U eq(C), the constraint distances of C–H was 0.93 Å.

3 Comment

Quinones are organic compounds that consist in two-carbonyl keto with two carbon–carbon double bonds in a six membered ring and depending on the aromatic ring fused to the quinone we can find three types of quinones, benzoquinones, naphthoquinones and anthraquinones [6]. Quinones are natural occurring compounds which are found in plants, bacteria or insects [7, 8]. Quinones are interesting compounds due to multiple biological properties such as antibacterial, antifungal, antioxidant and anti-cancer [9], [10], [11], [12], [13]. Quinones are vastly studied due to redox properties which can be used for energy storage applications [14, 15].

In this structure, there are three crystallographically independent molecules in the asymmetric unit. (see the figure) Half-normal probability plot analysis was used to identify systematic geometrical differences. A comparison of the bond distances and angles of the fitted residues reveals that the molecules do not show any significant geometrical differences. The main difference lies in the conformations of the nitro-group, which are involved in intermolecular interactions and crystal-packing effects. The largest difference (0.0460 Å) is between the N1C–O3C bond in the first molecule and N1B–O4B in the second molecule (9.200  Δ/σ). The N–O bond lengths in the nitro group range from 1.170(3) to 1.220(4) Å. The angle between O–N–O in these structures range from 121.0(3) to 125.0(3)°, O–N–C range between 116.4(2) and 119.9(2)°, similar value to reported by us in Barrientos et al. [16, 17]. There are no classical hydrogen bonds in the crystal [5], only intermolecular C–H⋯O interactions with distances of 3.129(5)–3.273(4) Å between the donor and acceptor atoms are found [18]. The crystal structure exhibits C–O⋯p and N–O⋯p interactions [C(4A)–O(2A)⋯Cg(1) = 3.817(3) Å, C(4C)–O(2C)⋯Cg(7) = 3.939(4) Å, C(4C)–O(2C)⋯Cg(8) = 3.937(4) Å, N(1B)–O(3B)⋯Cg(1) = 3.101(3) Å, N(1C)–O(3C)⋯Cg(4) = 2.899(4) Å. In crystal-packing the interaction between the quinone ring and the quinone oxygen of the next unit is observed (C(4A)–O(2A)⋯Cg(1)) [19], [20], [21], simultaneously in the next unit the interaction between the oxygen of the nitro group with the quinone ring is observed (N(1B)–O(3B)⋯Cg(1) and N(1C)–O(3C)⋯Cg(4)) generating a turn between the molecules that form the asymmetric unit.


Corresponding author: Silvana Moris, Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile, E-mail:

Acknowledgements

We gratefully acknowledge support by FONDEQUIP EQM200138 for D8 Venture diffractometer.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: FONDEQUIP EQM200138.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. BRUKER. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K., Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected. Acta Crystallogr. 2015, A71, 59–75.10.1107/S2053273314022207Search in Google Scholar PubMed PubMed Central

3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.10.1107/S0021889808042726Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

5. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13.10.1107/S0021889802022112Search in Google Scholar

6. Shvartsberg, M. S., Kolodina, E. A., Lebedeva, N. I., Fedenok, L. G. Vicinal acetylenic derivatives of 2-amino-1,4-naphthoquinone as a key precursors of heterocyclic quinones. Russ. Chem. Bull. 2012, 61, 582–588.10.1007/s11172-012-0084-8Search in Google Scholar

7. Ivashkina, N. V., Romanov, V. S., Moroz, A. A., Shvartsberg, M. S. 5-Arylethynyl-1,4-naphthoquinones. Russ. Chem. Bull. 1984, 33, 2345–2348.10.1007/BF00948851Search in Google Scholar

8. Dulo, B., Phan, K., Githaiga, J., Raes, K., De Meester, S. Natural quinone dyes: a review on structure, extraction techniques, analysis and application potential. Waste Biomass. Valorization 2021, 12, 6339–6374.10.1007/s12649-021-01443-9Search in Google Scholar

9. Abaham, I., Joshi, R., Pardasani, P., Pardasani, R. T. Recent advances in 1,4-benzoquinone chemistry. J. Braz. Chem. Soc. 2011, 22, 385–421.10.1590/S0103-50532011000300002Search in Google Scholar

10. Borges, M. E., Tejera, R. L., Diaz, L., Esparza, P., Ibanez, E. Natural dyes extraction from cochineal (Dactylopius coccus). New extraction methods. Food Chem. 2012, 132, 1855–1860.10.1016/j.foodchem.2011.12.018Search in Google Scholar

11. Srivastava, S., Chowdhury, A. R., Maurya, S. Antimicrobial efficacy of methylated lac dye, an anthraquinone derivative. Indian J. Microbiol. 2017, 57, 470–476.10.1007/s12088-017-0682-0Search in Google Scholar PubMed PubMed Central

12. Khan, S. A., Ahmad, A., Khan, M. I., Yusuf, M., Shahid, M., Manzoor, N., Mohammad, F. Antimicrobial activity of wool yarn dyed with Rheum emodi L. (Indian Rhubarb). Dyes Pigments 2012, 95, 206–214.10.1016/j.dyepig.2012.04.010Search in Google Scholar

13. Tsao, Y.-C., Chang, Y.-J., Wang, C.-H., Chen, L. Discovery of isoplumbagin as a novel NQO1 substrate and anti-cancer quinone. Int. J. Mol. Sci. 2020, 21, 4378.10.3390/ijms21124378Search in Google Scholar PubMed PubMed Central

14. Jones, A., Ejigu, A., Wang, B., Adams, R., Bissett, M., Dryfe, R. Quinone voltammetry for redox-flow battery applications. J. Electroanal. Chem. 2022, 920, 116572.10.1016/j.jelechem.2022.116572Search in Google Scholar

15. Sedenho, G., De Porcellinis, D., Jing, Y., Kerr, E., Mejia-Mendoza, L. M., Vazquez-Mayagoitia, A., Aspuru-Guzik, A., Gordon, R. G., Crespilho, F., Aziz, M. J. Effect of molecular structure of quinones and carbon electrode surfaces on the interfacial electron transfer process. ACS Appl. Energy Mater. 2020, 3, 1933–1943.10.1021/acsaem.9b02357Search in Google Scholar

16. Barrientos, C., Barahona, P., Guevara, J. L., Squella, J. A., Moris, S. The crystal structure of 4-(pyren-1-yl)butyl-3-nitrobenzoate, C27H21NO4. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 1213–1214.10.1515/ncrs-2019-0340Search in Google Scholar

17. Barrientos, C., Squella, J. A., Moris, S. The crystal structure of 4-(pyren-1-yl)butyl-4-nitrobenzoate, C27H21NO4. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 459–461.10.1515/ncrs-2023-0034Search in Google Scholar

18. Moris, S., Galdamez, A., Jara, P., Saitz-Barria, C. Synthesis of novel p-tert-butylcalix[4]arene derivative: structural characterization of a methanol inclusion compound. Crystals 2016, 6, 114.10.3390/cryst6090114Search in Google Scholar

19. Steed, K. M., Steed, J. W. Packing problems: high Z′ crystal structures and their relationship to cocrystals, inclusion compounds, and polymorphism. Chem. Rev. 2015, 115, 2895–2933.10.1021/cr500564zSearch in Google Scholar PubMed

20. Desiraju, G. R. On the presence of multiple molecules in the crystal asymmetric unit (Z′ > 1). Cryst. Eng. Comm. 2007, 9, 91–92.10.1039/B614933BSearch in Google Scholar

21. Nichol, G. S., Clegg, W. The importance of weak C–H⋯O bonds and π⋯π stacking interactions in the formation of organic 1,8-bis(dimethylamino)naphthalene complexes with Z′ > 1. Cryst. Growth Des. 2006, 6, 451–460.10.1021/cg0503806Search in Google Scholar

Received: 2023-05-04
Accepted: 2023-05-15
Published Online: 2023-05-31
Published in Print: 2023-08-28

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of a polymorph of potassium picrate, C6H2KN3O7
  4. The crystal structure of (1E,2E)-1,2-bis(quinolin-2-ylmethylene)hydrazine, C20H14N4
  5. 5-Amino-2-chloro-4-fluoro-N-(N-isopropyl-N-methylsulfamoyl) benzamide, C11H15O3ClFN3S
  6. Crystal structure of trans-N 1,N 8-bis(2-cyanoethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, C22H42N6
  7. The crystal structure of [N-{[2-(oxy)-4-methoxyphenyl](phenyl)methylidene}alaninato]-diphenyl-silicon(IV) – chloroform (1/1), C29H25NO4Si·CHCl3
  8. Crystal structure of tetracarbonyl-{μ-[N-(diphenylphosphanyl)-N,P,P-triphenylphosphinous amide]}-bis[μ-(phenylmethanethiolato)]diiron (Fe–Fe), C48H39Fe2NO4P2S2
  9. Crystal structure of baryte from Mine du Pradet (France)
  10. The crystal structure of [(2,2′-bipyridine-6-carboxylato-κ3 N,N,O)-(6-phenylpyridine-2-carboxylate-κ2 N,O)copper(II)] monohydrate, C23H17N3O5Cu
  11. Crystal structure of bis(μ-benzeneselenolato)-(μ-[N-benzyl-N-(diphenylphosphanyl)-P,P-diphenylphosphinous amide])-tetracarbonyl diiron (Fe–Fe), C47H37Fe2NO4P2Se2
  12. The crystal structure of diaqua-methanol-κ1 O- (3-thiophenecarboxylato-κO)-(2,2′-dipyridyl-κ2 N,N′)manganese(II) 3-thiophenecarboxylate, C21H22N2O7S2Mn
  13. Crystal structure of catena-poly[tetrakis(butyl)-μ2-2-((oxido(phenyl)methylene)hydrazineylidene)propanoato-κ4 O:O,O′,N-μ2-2-((oxido(phenyl)methylene)hydrazineylidene)propanoato-κ4 O,N,O′:N′-ditin(IV)], C34H50N6O6Sn2
  14. Crystal structure of 4-chloro-N′-[(1E)-(2-nitrophenyl)methylidene]benzohydrazide, C14H10ClN3O3
  15. The crystal structure of 3-(1′-deoxy-3′,5′-O-dibenzy-β-d-ribosyl)adenine dichloromethane solvate, C49H52Cl2N10O6
  16. The crystal structure of (Z)-4-amino-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H17N3O
  17. The co-crystal structure of etoricoxib–phthalic acid (1/1), C18H15ClN2O2S·C8H6O4
  18. Crystal structure of (glycinto-κ 2 O,N )-[5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ 4 N,N ,N ,N ]nickel(II) perchlorate monohydrate C18H42ClN5NiO7
  19. The crystal structure of catena-poly[bis(1-ethylimidazole-k1 N)-(μ 2-benzene-1-carboxyl-3,5-dicarboxylato-κ 2 O, O′)zinc(II)], C19H20N4O6Zn
  20. Crystal structure of 3-(thiazol-2-ylcarbamoyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C11H12N2O4S
  21. Rietveld structure analysis of keatite, a rare, metastable SiO2 polymorph
  22. Crystal structure of catena-poly[(μ2-isophthalato-k3 O,O′:O″)(4-(4-pyridyl)-2,5-dipyrazylpyridine-k3 N,N′,N″)cobalt(II)] trihydrate C26H22N6O7Co1
  23. Crystal structure of 3,5–di-O-benzoyl-1,2-O-isopropylidene-α–D-ribose, C22H22O7
  24. The crystal structure of fac-tricarbonyl(6-bromo-2,2-bipyridine-κ2 N,N)-(nitrato-κO)rhenium(I), C13H7BrN3O6Re
  25. The crystal structure of (E)-N′-(4-hydroxy-3-methoxybenzylidene)-2-naphthohydrazide monohydrate, C19H18N2O4
  26. The crystal structure of 5,5′-diselanediyl-bis(2-hydroxybenzaldehyde), C14H10O4Se2
  27. The crystal structure of catena-poly[diaqua-m2-dicyanido-κ2 C:N-dicyanido-κ1 C-bis(4-(pyridin-4-yl)benzaldehyde-κ1N)iron(II)-platinum(II), C28H22N6O4PtFe
  28. Redetermination of the crystal structure of 5,14-dihydro-6,17-dimethyl-8,15-diphenyldibenzo(b,i)(1,4,8,11)tetra-azacyclotetradecine, C32H28N4
  29. Crystal structure of poly[(μ3-2-(3,5-dicarboxyphenyl) benzimidazole-6-carboxylato-κ4O:O:O′:O″)lead(II)] monohydrate, C16H10N2O7Pb
  30. The crystal structure of fac-tricarbonyl(2-pyridin-2-yl-quinoline-κ2 N,N′)-(pyrazole-κN)rhenium(I)nitrate, C20H14N4O3ReNO3
  31. Crystal structure of dibromo-dicarbonyl-bis(tricyclohexylphosphine)-osmium(II) dichloromethane solvate, C38H66Br2O2OsP2
  32. Crystal structure of poly[bis(μ 2-2,6-bis(1-imidazoly)pyridine-κ 2 N:N′)copper(II)] diperchlorate dihydrate, C22H22Cl2CuN10O10
  33. The crystal structure of fac-tricarbonyl(N-benzoyl-N,N-cyclohexylmethylcarbamimidothioato-κ2 S,O)-(pyridine-κN)rhenium(I), C23H24N3O4ReS
  34. Crystal structure of (E)-7-fluoro-2-(4-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O
  35. Synthesis and crystal structure of 1-((3R,10S,13S, 17S)-3-((2-methoxyphenyl)amino)-10,13-dimethylhexadecahydro-1H-cyclopenta[α]phenanthren-17-yl)ethan-1-one, C28H41NO2
  36. The crystal structure of fac-tricarbonyl((pyridin-2-yl)methanamino-κ2 N,N′)-((pyridin-2-yl)methanamino-κN)rhenium(I) nitrate, C15H16O3N4Re
  37. The crystal structure of (1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)-N-((1-(4-vinylbenzyl)-1H-benzo[d]imidazol-2-yl)methyl)methanamine-κ 4 N,N′,N″,N‴)tris(nitrato-kO,O′)-erbium(III), C29H27ErN8O9
  38. Crystal structure of tetracene-5,12-dione, C18H10O2
  39. Crystal structure of (3R,3aS,6R,6aR)-6-hexyl-3-methyltetrahydrofuro[3,4-b]furan-2,4-dione, C13H20O4
  40. The crystal structure of N1,N3-bis((E)-thiophen-2-ylmethylene)isophthalohydrazide monohydrate, C18H16N4O3S2
  41. Crystal structure of methyl ((4-aminobenzyl)sulfonyl)-L-prolinate, C13H18N2O4S
  42. Crystal structure of (E)-3-(3-methoxybenzylidene)benzofuran-2(3H)-one, C16H12O3
  43. Synthesis and crystal structure (E)-1-(4-bromo-2-hydroxyphenyl)-3-(dimethylamino)prop-2-en-1-one, C11H12BrNO2
  44. Synthesis and crystal structure of (S,E)-4-hydroxy-3-(2-((4aR,6aS,7R,10aS,10bR)-3,3,6a,10b-tetramethyl-8-methylenedecahydro-1H-naphtho[2,1-d][1,3]dioxin-7-yl)ethylidene)dihydrofuran-2(3H)-one, C23H34O5
  45. The crystal structure of N,N′-(1,2-phenylene)bis (2-((2-oxopropyl)selanyl)benzamide), C26H24N2O4Se2
  46. The crystal structure of 1-ethyl-2-nitro-imidazole oxide, C5H7N3O3
  47. The crystal structure of 2-(2-fluorophenyl)naphtho[2,1-d]thiazole, C17H10FNS
  48. Crystal structure of (E)-2,4-di-tert-butyl-6-(((2-fluorophenyl)imino) methyl)phenol, C21H26FNO
  49. Synthesis and crystal structure of 3-methyl-2-(methylthio)-4H-chromen-4-one, C12H12O2S
  50. Crystal structure of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-5,10-dione, C14H4O2S4
  51. The crystal structure of dimethyl 2,2ʹ-((adamantane-1,3-diylbis(4,1-phenylene)) bis(oxy))diacetate, C28H32O6
  52. The crystal structure of N-(6-chloro-2-methyl-2H-indazol-5-yl)acetamide, C10H10ClN3O
  53. Crystal structure of triaqua-(5-bromoisophthalato-κ1 O)-(2,2′-bipyridine-κ2 N:N′)nickel(II) hydrate, C18H19BrN2NiO8
  54. The crystal structure of 2-amino-4-carboxypyridin-1-ium perchlorate, C6H7ClN2O6
  55. The crystal structure of catena-poly[5-aminonicotinic acid-k1 N-m2-bromido-copper(I)], Cu(C6N2H6O2)Br
  56. The crystal structure of 2,2-bis(3-methoxyphenyl)-1-tosyl-1,2-dihydro- 4,3λ4  -[1,3,2]diazaborolo[4,5,1-ij]quinoline - dichloromethane (1/1)
  57. The crystal structure of catena-poly[bis(6-phenylpyridine-2-carboxylato-κ2 N,O)-(μ2-4,4′-bipyridne-κ2 N:N)cadmium(II)], C34H24N4O4Cd
  58. The crystal structure of 5,7-dinitropyrazolo[5,1-b]quinazolin-9(4H)-one, C10H5N5O5
  59. Crystal structure of rac-1,8-bis(2-carbamoylethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, C22H46N6O2
  60. The crystal structure of (E)-N -(2-bromobenzylidene)-2-naphthohydrazide, C36H26Br2N4O2
  61. The crystal structure of 5-nitronaphthoquinone, C10H5NO4
  62. The crystal structure of (S, R p )-4–benzhydrylideneamino-12-(4-tert-butyl oxazolin-2-yl)[2.2]paracyclophane, C36H36N2O
  63. Synthesis and crystal structure of 2-(2-oxo-2-(o-tolyl)ethyl)-4H-chromen-4-one, C18H14O3
  64. Crystal structure of 2-(thiazol-2-yl)hexahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione, C11H10N2O3S
  65. Crystal structure of N-(diaminomethylene)-1-(dimethylamino)-1-iminiomethanaminium dichloride, C4H13Cl2N5
  66. Crystal structure of poly[(μ3-3, 5-dichloro-2-hydroxy-benzoato-κ4 Cl,O:O′:O″) silver(I)], C7H3AgCl2O3
  67. The crystal structure of tetrakis(1-isopropylimidazole-κ1 N)-[μ2- imidazole-4,5-dicarboxylato-κ4 O,N,O′,N′)]- trioxido-divanadium, C29H41N10O7V2
  68. Crystal structure of catena-[(μ3-bromido)-(1H-1,2,4-triazol-1-yl)benzoato-κ1 N)copper(I)], C9H7BrCuN3O2
  69. The crystal structure of (E)-4-fluoro-N′-(1-(2-hydroxyphenyl)propylidene)benzohydrazide, C16H15FN2O2
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0211/html
Scroll to top button