Home The co-crystal structure of etoricoxib–phthalic acid (1/1), C18H15ClN2O2S·C8H6O4
Article Open Access

The co-crystal structure of etoricoxib–phthalic acid (1/1), C18H15ClN2O2S·C8H6O4

  • Yu-Heng Ma , Miao-Miao Zhu , Chun-Ni Zhang , Xiao-Sa Tang , Wei-Guo Zhang and Wen-Jing Ma ORCID logo EMAIL logo
Published/Copyright: April 28, 2023

Abstract

C18H15ClN2O2S·C8H6O4, triclinic, P 1 (no. 2), a = 8.4340(17) Å, b = 12.172(2) Å, c = 12.816(3) Å, α =  89.98 ( 3 ) ° , β =  77.41 ( 3 ) ° , γ =  72.52 ( 3 ) ° , V = 1221.7(5) Å3, Z = 2, R gt (F) = 0.0482, wR ref (F 2) = 0.1344, T = 293 K.

CCDC no.: 2249239

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Block
Size: 0.30 × 0.20 × 0.10 mm
Wavelength: Mo radiation (0.71073 Å)
μ: 0.29 mm−1
Diffractometer, scan mode: Nonius CAD4, ω/2θ
θ max, completeness: 25.4°, >99%
N(hkl)measured , N(hkl)unique, R int: 4813, 4484, 0.022
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 3445
N(param)refined: 333
Programs: Olex2 [1], SHELX [2, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.7979 (3) 0.8052 (2) 0.67913 (19) 0.0327 (5)
C2 0.6951 (3) 0.8191 (2) 0.78274 (19) 0.0331 (5)
C3 0.7117 (3) 0.8959 (2) 0.8556 (2) 0.0393 (6)
H3 0.645914 0.906262 0.925346 0.047*
C4 0.8249 (4) 0.9571 (2) 0.8254 (2) 0.0429 (6)
C5 0.9204 (3) 0.9411 (2) 0.7220 (2) 0.0432 (6)
H5 0.995820 0.983452 0.701181 0.052*
C6 0.5613 (3) 0.7616 (2) 0.81917 (19) 0.0335 (5)
C7 0.4259 (3) 0.7770 (2) 0.7700 (2) 0.0388 (6)
H7 0.423795 0.817002 0.708281 0.047*
C8 0.2943 (3) 0.7332 (2) 0.8123 (2) 0.0397 (6)
H8 0.202502 0.745002 0.779954 0.048*
C9 0.2995 (3) 0.6715 (2) 0.9029 (2) 0.0348 (5)
C10 0.4367 (3) 0.6523 (2) 0.9510 (2) 0.0392 (6)
H10 0.441169 0.609088 1.010778 0.047*
C11 0.5665 (3) 0.6978 (2) 0.9093 (2) 0.0377 (6)
H11 0.658356 0.685877 0.941589 0.045*
C12 0.0775 (4) 0.6434 (3) 1.0905 (3) 0.0680 (10)
H12A −0.017065 0.616351 1.121524 0.102*
H12B 0.045665 0.725394 1.105693 0.102*
H12C 0.173102 0.605887 1.120582 0.102*
C13 0.7950 (3) 0.7243 (2) 0.59324 (19) 0.0339 (5)
C14 0.8125 (3) 0.7540 (2) 0.4875 (2) 0.0414 (6)
H14 0.825033 0.825437 0.469568 0.050*
C15 0.8110 (4) 0.6772 (2) 0.4101 (2) 0.0464 (7)
H15 0.824773 0.696172 0.339102 0.056*
C16 0.7893 (3) 0.5714 (2) 0.4363 (2) 0.0429 (6)
C17 0.7767 (3) 0.6161 (2) 0.6132 (2) 0.0381 (6)
H17 0.766897 0.593920 0.683164 0.046*
C18 0.7832 (4) 0.4851 (3) 0.3557 (3) 0.0593 (8)
H18A 0.857074 0.410347 0.364826 0.089*
H18B 0.820123 0.507214 0.284777 0.089*
H18C 0.668320 0.482299 0.365528 0.089*
C19 0.5667 (3) 0.2391 (2) 0.7045 (2) 0.0400 (6)
C20 0.5947 (3) 0.1467 (2) 0.6305 (2) 0.0370 (6)
C21 0.4992 (3) 0.0711 (2) 0.6535 (2) 0.0443 (6)
H21 0.513756 0.011761 0.603217 0.053*
C22 0.3827 (4) 0.0829 (3) 0.7505 (3) 0.0527 (7)
H22 0.319539 0.031609 0.765185 0.063*
C23 0.3605 (4) 0.1701 (3) 0.8246 (2) 0.0557 (8)
H23 0.284881 0.176438 0.890730 0.067*
C24 0.4502 (4) 0.2491 (3) 0.8018 (2) 0.0507 (7)
H24 0.432257 0.309217 0.852028 0.061*
C25 0.6434 (4) 0.3351 (2) 0.6823 (2) 0.0480 (7)
C26 0.7259 (3) 0.1241 (2) 0.5279 (2) 0.0386 (6)
Cl1 0.84543 (14) 1.05453 (9) 0.91590 (7) 0.0775 (3)
N1 0.9080 (3) 0.86680 (18) 0.65098 (17) 0.0386 (5)
N2 0.7726 (3) 0.54222 (18) 0.53802 (18) 0.0411 (5)
O1 −0.0081 (3) 0.6699 (2) 0.9084 (2) 0.0741 (7)
O2 0.2015 (3) 0.48969 (17) 0.93349 (18) 0.0595 (6)
O3 0.6801 (4) 0.3835 (3) 0.7501 (2) 0.0923 (9)
O4 0.6550 (3) 0.36536 (18) 0.58412 (17) 0.0552 (6)
H4 0.703 (5) 0.427 (3) 0.571 (3) 0.079 (11)*
O5 0.7049 (3) 0.0924 (2) 0.44496 (16) 0.0648 (6)
O6 0.8711 (2) 0.13690 (17) 0.54007 (15) 0.0468 (5)
H6 0.932151 0.138157 0.481065 0.070*
S1 0.13289 (8) 0.61210 (6) 0.95284 (5) 0.0384 (2)

1 Source of material

In representative experiments, the etoricoxib (ETR) was presented by Nanjing Pujun Technology Co., Ltd. with no further purification. A mixture of ETR (35.9 mg, 0.1 mmol) and phthalic acid (16.6 mg, 0.1 mmol) was dissolved in a mixture of 5.0 mL methanol, and the resulting mixture was stirred and dissolved at 60 °C to obtain a clear solution. Then the solution was filtered and placed in a sample vial, covered with membrane and punctured. Crystals of the title compound were obtained by slow evaporation of the solution at room temperature within one week.

1.1 Experimental details

The crystal structure was determined using a CAD4 diffractometer. Using Olex2 [1], the structure was solved with the ShelXT [2] and refined with the ShelXL [3] refinement package. The H atoms were placed in idealized positions and treated as riding on their parent atoms, with the d (C–H) = 0.96 Å (methyl) and d (C–H) = 0.93 Å (aromatic) and d (O–H) = 0.85 Å. And U iso (H) = 1.2 times U iso (C) and U iso (H) = 1.5 times U iso (O).

2 Comment

Etoricoxib (ETR), a selective inhibitor of cyclooxygenase-2, is used to treat osteoarthritis, rheumatoid arthritis, and acute gouty arthritis. According to the biopharmaceutics classification system (BCS) [4], etoricoxib is classified as a BCS class II drug due to its poor aqueous solubility, which limits its clinical application [5, 6]. A cocrystal was reported to improve the physical and chemical stability, dissolution rate, and mechanical properties of drugs [7]. To date, four cocrystals including ETR–succinic acid, ETR–glutaric acid, ETR–adipic acid, ETR–suberic acid and ETR–caprolactam have been reported [8, 9].

In the crystal structure, the asymmetric unit contains one ETR molecule and one phthalic acid molecule (see the figure). It indicates that the hydrogen bond plays an important role in maintaining the crystal structure. The N2 atom on the pyridine group of ETR is a hydrogen bond acceptor, and the H atom on the carboxyl (O4–H4) of the phthalic acid molecular is a hydrogen bond donor, forming the intermolecular hydrogen bond O4–H4⋯N2 [length 1.697 Å, angle 173.1°]. The N2 atom of ETR shows more basic than N1, perhaps because N1 is deactivated as an acceptor by the m-chloro group. The C–C bond lengths of the aromatic rings and bond angles of the phenyl rings were within normal ranges. The C–Cl bond lengths of the benzene ring was 1.730(3) Å. In general, all bond lengths and angles are in the expected ranges in both molecules [10].


Corresponding author: Wen-Jing Ma, School of Materials Science and Chemical Engineering, Chuzhou University, Chuzhou, Anhui, 239000, P.R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Chuzhou University Initial Funding (2020qd09), Anhui University Natural Science Foundation-funded project (No. KJ2020B19), New engineering research and reform practice project (2021xgk10).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

4. FDA. Waiver of In vivo Bioavailability and Bioequivalence Studies for Immediate–Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System; Food and Drug Administration: Silver Spring, MD, USA, 2002.Search in Google Scholar

5. Yazdanian, M., Briggs, K., Jankovsky, C., Hawi, A. The ‘high solubility’ definition of the current FDA guidance on biopharmaceutical classification system may be too strict for acidic drugs. Pharm. Res. 2004, 21, 293–299; https://doi.org/10.1023/b:pham.0000016242.48642.71.10.1023/B:PHAM.0000016242.48642.71Search in Google Scholar PubMed

6. Yu, L. X., Amidon, G. L., Polli, J. E., Zhao, H., Mehta, M. U., Conner, D. P., Shah, V. P., Lesko, L. J., Chen, M. L., Lee, V. H., Hussain, A. S. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm. Res. 2002, 19, 921–925; https://doi.org/10.1023/a:1016473601633.10.1023/A:1016473601633Search in Google Scholar

7. Duggirala, N. K., Perry, M. L., Almarsson, Ö., Zaworotko, M. J. Pharmaceutical cocrystals: along the path to improved medicines. Chem. Commun. 2016, 52, 640–655; https://doi.org/10.1039/c5cc08216a.Search in Google Scholar PubMed

8. Jaggavarapu, S. R. CCDC 1018390: Experimental Crystal Structure Determination, 2014. https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1018390&DatabaseToSearch=Published.Search in Google Scholar

9. Mittapalli, S., Bolla, G., Perumalla, S., Nangia, A. Can we exchange water in a hydrate structure: a case study of etoricoxib. CrystEngComm 2016, 18, 2825–2829; https://doi.org/10.1039/c6ce00003g.Search in Google Scholar

10. Grobelny, P., Mukherjee, A., Desiraju, G. R. Polymorphs and hydrates of etoricoxib, a selective COX-2 inhibitor. CrystEngComm 2012, 14, 5785–5794; https://doi.org/10.1039/c2ce06604a.Search in Google Scholar

Received: 2023-03-19
Accepted: 2023-04-13
Published Online: 2023-04-28
Published in Print: 2023-08-28

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of a polymorph of potassium picrate, C6H2KN3O7
  4. The crystal structure of (1E,2E)-1,2-bis(quinolin-2-ylmethylene)hydrazine, C20H14N4
  5. 5-Amino-2-chloro-4-fluoro-N-(N-isopropyl-N-methylsulfamoyl) benzamide, C11H15O3ClFN3S
  6. Crystal structure of trans-N 1,N 8-bis(2-cyanoethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, C22H42N6
  7. The crystal structure of [N-{[2-(oxy)-4-methoxyphenyl](phenyl)methylidene}alaninato]-diphenyl-silicon(IV) – chloroform (1/1), C29H25NO4Si·CHCl3
  8. Crystal structure of tetracarbonyl-{μ-[N-(diphenylphosphanyl)-N,P,P-triphenylphosphinous amide]}-bis[μ-(phenylmethanethiolato)]diiron (Fe–Fe), C48H39Fe2NO4P2S2
  9. Crystal structure of baryte from Mine du Pradet (France)
  10. The crystal structure of [(2,2′-bipyridine-6-carboxylato-κ3 N,N,O)-(6-phenylpyridine-2-carboxylate-κ2 N,O)copper(II)] monohydrate, C23H17N3O5Cu
  11. Crystal structure of bis(μ-benzeneselenolato)-(μ-[N-benzyl-N-(diphenylphosphanyl)-P,P-diphenylphosphinous amide])-tetracarbonyl diiron (Fe–Fe), C47H37Fe2NO4P2Se2
  12. The crystal structure of diaqua-methanol-κ1 O- (3-thiophenecarboxylato-κO)-(2,2′-dipyridyl-κ2 N,N′)manganese(II) 3-thiophenecarboxylate, C21H22N2O7S2Mn
  13. Crystal structure of catena-poly[tetrakis(butyl)-μ2-2-((oxido(phenyl)methylene)hydrazineylidene)propanoato-κ4 O:O,O′,N-μ2-2-((oxido(phenyl)methylene)hydrazineylidene)propanoato-κ4 O,N,O′:N′-ditin(IV)], C34H50N6O6Sn2
  14. Crystal structure of 4-chloro-N′-[(1E)-(2-nitrophenyl)methylidene]benzohydrazide, C14H10ClN3O3
  15. The crystal structure of 3-(1′-deoxy-3′,5′-O-dibenzy-β-d-ribosyl)adenine dichloromethane solvate, C49H52Cl2N10O6
  16. The crystal structure of (Z)-4-amino-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H17N3O
  17. The co-crystal structure of etoricoxib–phthalic acid (1/1), C18H15ClN2O2S·C8H6O4
  18. Crystal structure of (glycinto-κ 2 O,N )-[5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ 4 N,N ,N ,N ]nickel(II) perchlorate monohydrate C18H42ClN5NiO7
  19. The crystal structure of catena-poly[bis(1-ethylimidazole-k1 N)-(μ 2-benzene-1-carboxyl-3,5-dicarboxylato-κ 2 O, O′)zinc(II)], C19H20N4O6Zn
  20. Crystal structure of 3-(thiazol-2-ylcarbamoyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C11H12N2O4S
  21. Rietveld structure analysis of keatite, a rare, metastable SiO2 polymorph
  22. Crystal structure of catena-poly[(μ2-isophthalato-k3 O,O′:O″)(4-(4-pyridyl)-2,5-dipyrazylpyridine-k3 N,N′,N″)cobalt(II)] trihydrate C26H22N6O7Co1
  23. Crystal structure of 3,5–di-O-benzoyl-1,2-O-isopropylidene-α–D-ribose, C22H22O7
  24. The crystal structure of fac-tricarbonyl(6-bromo-2,2-bipyridine-κ2 N,N)-(nitrato-κO)rhenium(I), C13H7BrN3O6Re
  25. The crystal structure of (E)-N′-(4-hydroxy-3-methoxybenzylidene)-2-naphthohydrazide monohydrate, C19H18N2O4
  26. The crystal structure of 5,5′-diselanediyl-bis(2-hydroxybenzaldehyde), C14H10O4Se2
  27. The crystal structure of catena-poly[diaqua-m2-dicyanido-κ2 C:N-dicyanido-κ1 C-bis(4-(pyridin-4-yl)benzaldehyde-κ1N)iron(II)-platinum(II), C28H22N6O4PtFe
  28. Redetermination of the crystal structure of 5,14-dihydro-6,17-dimethyl-8,15-diphenyldibenzo(b,i)(1,4,8,11)tetra-azacyclotetradecine, C32H28N4
  29. Crystal structure of poly[(μ3-2-(3,5-dicarboxyphenyl) benzimidazole-6-carboxylato-κ4O:O:O′:O″)lead(II)] monohydrate, C16H10N2O7Pb
  30. The crystal structure of fac-tricarbonyl(2-pyridin-2-yl-quinoline-κ2 N,N′)-(pyrazole-κN)rhenium(I)nitrate, C20H14N4O3ReNO3
  31. Crystal structure of dibromo-dicarbonyl-bis(tricyclohexylphosphine)-osmium(II) dichloromethane solvate, C38H66Br2O2OsP2
  32. Crystal structure of poly[bis(μ 2-2,6-bis(1-imidazoly)pyridine-κ 2 N:N′)copper(II)] diperchlorate dihydrate, C22H22Cl2CuN10O10
  33. The crystal structure of fac-tricarbonyl(N-benzoyl-N,N-cyclohexylmethylcarbamimidothioato-κ2 S,O)-(pyridine-κN)rhenium(I), C23H24N3O4ReS
  34. Crystal structure of (E)-7-fluoro-2-(4-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O
  35. Synthesis and crystal structure of 1-((3R,10S,13S, 17S)-3-((2-methoxyphenyl)amino)-10,13-dimethylhexadecahydro-1H-cyclopenta[α]phenanthren-17-yl)ethan-1-one, C28H41NO2
  36. The crystal structure of fac-tricarbonyl((pyridin-2-yl)methanamino-κ2 N,N′)-((pyridin-2-yl)methanamino-κN)rhenium(I) nitrate, C15H16O3N4Re
  37. The crystal structure of (1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)-N-((1-(4-vinylbenzyl)-1H-benzo[d]imidazol-2-yl)methyl)methanamine-κ 4 N,N′,N″,N‴)tris(nitrato-kO,O′)-erbium(III), C29H27ErN8O9
  38. Crystal structure of tetracene-5,12-dione, C18H10O2
  39. Crystal structure of (3R,3aS,6R,6aR)-6-hexyl-3-methyltetrahydrofuro[3,4-b]furan-2,4-dione, C13H20O4
  40. The crystal structure of N1,N3-bis((E)-thiophen-2-ylmethylene)isophthalohydrazide monohydrate, C18H16N4O3S2
  41. Crystal structure of methyl ((4-aminobenzyl)sulfonyl)-L-prolinate, C13H18N2O4S
  42. Crystal structure of (E)-3-(3-methoxybenzylidene)benzofuran-2(3H)-one, C16H12O3
  43. Synthesis and crystal structure (E)-1-(4-bromo-2-hydroxyphenyl)-3-(dimethylamino)prop-2-en-1-one, C11H12BrNO2
  44. Synthesis and crystal structure of (S,E)-4-hydroxy-3-(2-((4aR,6aS,7R,10aS,10bR)-3,3,6a,10b-tetramethyl-8-methylenedecahydro-1H-naphtho[2,1-d][1,3]dioxin-7-yl)ethylidene)dihydrofuran-2(3H)-one, C23H34O5
  45. The crystal structure of N,N′-(1,2-phenylene)bis (2-((2-oxopropyl)selanyl)benzamide), C26H24N2O4Se2
  46. The crystal structure of 1-ethyl-2-nitro-imidazole oxide, C5H7N3O3
  47. The crystal structure of 2-(2-fluorophenyl)naphtho[2,1-d]thiazole, C17H10FNS
  48. Crystal structure of (E)-2,4-di-tert-butyl-6-(((2-fluorophenyl)imino) methyl)phenol, C21H26FNO
  49. Synthesis and crystal structure of 3-methyl-2-(methylthio)-4H-chromen-4-one, C12H12O2S
  50. Crystal structure of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-5,10-dione, C14H4O2S4
  51. The crystal structure of dimethyl 2,2ʹ-((adamantane-1,3-diylbis(4,1-phenylene)) bis(oxy))diacetate, C28H32O6
  52. The crystal structure of N-(6-chloro-2-methyl-2H-indazol-5-yl)acetamide, C10H10ClN3O
  53. Crystal structure of triaqua-(5-bromoisophthalato-κ1 O)-(2,2′-bipyridine-κ2 N:N′)nickel(II) hydrate, C18H19BrN2NiO8
  54. The crystal structure of 2-amino-4-carboxypyridin-1-ium perchlorate, C6H7ClN2O6
  55. The crystal structure of catena-poly[5-aminonicotinic acid-k1 N-m2-bromido-copper(I)], Cu(C6N2H6O2)Br
  56. The crystal structure of 2,2-bis(3-methoxyphenyl)-1-tosyl-1,2-dihydro- 4,3λ4  -[1,3,2]diazaborolo[4,5,1-ij]quinoline - dichloromethane (1/1)
  57. The crystal structure of catena-poly[bis(6-phenylpyridine-2-carboxylato-κ2 N,O)-(μ2-4,4′-bipyridne-κ2 N:N)cadmium(II)], C34H24N4O4Cd
  58. The crystal structure of 5,7-dinitropyrazolo[5,1-b]quinazolin-9(4H)-one, C10H5N5O5
  59. Crystal structure of rac-1,8-bis(2-carbamoylethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, C22H46N6O2
  60. The crystal structure of (E)-N -(2-bromobenzylidene)-2-naphthohydrazide, C36H26Br2N4O2
  61. The crystal structure of 5-nitronaphthoquinone, C10H5NO4
  62. The crystal structure of (S, R p )-4–benzhydrylideneamino-12-(4-tert-butyl oxazolin-2-yl)[2.2]paracyclophane, C36H36N2O
  63. Synthesis and crystal structure of 2-(2-oxo-2-(o-tolyl)ethyl)-4H-chromen-4-one, C18H14O3
  64. Crystal structure of 2-(thiazol-2-yl)hexahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione, C11H10N2O3S
  65. Crystal structure of N-(diaminomethylene)-1-(dimethylamino)-1-iminiomethanaminium dichloride, C4H13Cl2N5
  66. Crystal structure of poly[(μ3-3, 5-dichloro-2-hydroxy-benzoato-κ4 Cl,O:O′:O″) silver(I)], C7H3AgCl2O3
  67. The crystal structure of tetrakis(1-isopropylimidazole-κ1 N)-[μ2- imidazole-4,5-dicarboxylato-κ4 O,N,O′,N′)]- trioxido-divanadium, C29H41N10O7V2
  68. Crystal structure of catena-[(μ3-bromido)-(1H-1,2,4-triazol-1-yl)benzoato-κ1 N)copper(I)], C9H7BrCuN3O2
  69. The crystal structure of (E)-4-fluoro-N′-(1-(2-hydroxyphenyl)propylidene)benzohydrazide, C16H15FN2O2
Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0129/html
Scroll to top button