Home Crystal structure of bis(μ2-2-oxido-2-phenylacetato-κ3 O,O′:O′)-bis(N-oxido-benzamide-κ2 O,O′)-bis(propan-2-olato-κ1 O)dititanium(IV), C36H38N2O12Ti2
Article Open Access

Crystal structure of bis(μ2-2-oxido-2-phenylacetato-κ3 O,O′:O′)-bis(N-oxido-benzamide-κ2 O,O′)-bis(propan-2-olato-κ1 O)dititanium(IV), C36H38N2O12Ti2

  • Yu Youzhu ORCID logo EMAIL logo , Wang Hui , Li Leilei , Guo Yuhua , Feng Jing and Li Yichao
Published/Copyright: August 11, 2022

Abstract

C36H38N2O12Ti2, monoclinic, P21/n (no. 14), a = 10.3151(7) Å, b = 15.8747(11) Å, c = 11.5020(8) Å, β = 98.471(3)°, V = 1862.9(2) Å3, Z = 2, R gt(F) = 0.0386, wR ref(F 2) = 0.1075, T = 296(2) K.

CCDC no.: 2192008

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellowish block
Size: 0.22 × 0.21 × 0.17 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.49 mm−1
Diffractometer, scan mode: Bruker APEX-II
θ max, completeness: 28.4°, >99%
N(hkl)measured, N(hkl)unique, R int: 20724, 4653, 0.020
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3841
N(param)refined: 241
Programs: Bruker [1, 2], SHELX [3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.45626 (18) 0.69315 (10) 0.39588 (14) 0.0392 (4)
C2 0.36042 (17) 0.61868 (10) 0.39164 (14) 0.0360 (3)
H2 0.2960 0.6304 0.4442 0.043*
C3 0.28918 (18) 0.60399 (11) 0.26875 (15) 0.0416 (4)
C4 0.1622 (2) 0.63159 (15) 0.2392 (2) 0.0677 (6)
H4 0.1182 0.6562 0.2955 0.081*
C5 0.0997 (3) 0.6221 (2) 0.1228 (3) 0.0995 (11)
H5 0.0150 0.6423 0.1012 0.119*
C6 0.1626 (4) 0.5835 (2) 0.0419 (3) 0.1034 (12)
H6 0.1202 0.5765 −0.0346 0.124*
C7 0.2873 (4) 0.55510 (19) 0.0719 (2) 0.0895 (10)
H7 0.3296 0.5285 0.0160 0.107*
C8 0.3516 (3) 0.56565 (15) 0.18523 (18) 0.0605 (6)
H8 0.4373 0.5467 0.2050 0.073*
C9 0.40037 (17) 0.35817 (10) 0.25850 (15) 0.0381 (4)
C10 0.4490 (2) 0.32279 (11) 0.15463 (17) 0.0464 (4)
C11 0.3691 (3) 0.31484 (14) 0.04697 (18) 0.0609 (6)
H11 0.2827 0.3335 0.0378 0.073*
C12 0.4191 (4) 0.27905 (17) −0.0464 (2) 0.0811 (8)
H12 0.3654 0.2731 −0.1183 0.097*
C13 0.5444 (4) 0.25259 (18) −0.0349 (3) 0.0914 (10)
H13 0.5763 0.2285 −0.0988 0.110*
C14 0.6253 (3) 0.26097 (17) 0.0704 (3) 0.0873 (9)
H14 0.7119 0.2428 0.0779 0.105*
C15 0.5772 (2) 0.29670 (15) 0.1659 (2) 0.0640 (6)
H15 0.6318 0.3029 0.2373 0.077*
C16 0.2324 (5) 0.4475 (3) 0.7661 (3) 0.1440 (19)
H16A 0.2677 0.3915 0.7648 0.216*
H16B 0.1661 0.4487 0.8164 0.216*
H16C 0.3013 0.4861 0.7951 0.216*
C17 0.1744 (3) 0.47213 (19) 0.6457 (2) 0.0745 (7)
H17 0.1064 0.4308 0.6174 0.089*
C18 0.1134 (4) 0.5562 (2) 0.6367 (5) 0.1316 (16)
H18A 0.1711 0.5959 0.6808 0.197*
H18B 0.0320 0.5542 0.6677 0.197*
H18C 0.0973 0.5731 0.5557 0.197*
H1 0.217 (2) 0.3328 (13) 0.2246 (18) 0.044(5)*
N1 0.27581 (15) 0.35972 (10) 0.26548 (13) 0.0411 (3)
O1 0.24168 (11) 0.39634 (8) 0.36442 (10) 0.0379 (3)
O2 0.47699 (12) 0.38863 (8) 0.34421 (11) 0.0419 (3)
O3 0.27218 (13) 0.46692 (9) 0.57341 (10) 0.0463 (3)
O4 0.43525 (12) 0.54754 (7) 0.43393 (9) 0.0358 (3)
O5 0.42037 (14) 0.76294 (8) 0.36059 (14) 0.0578 (4)
O6 0.57385 (12) 0.67569 (8) 0.44142 (11) 0.0452 (3)
Ti1 0.38148 (3) 0.43352 (2) 0.48073 (2) 0.03263 (10)

Source of material

All reagents and solvents employed in this work were commercially available and used without further purification.

Firstly, a mixture of mandelic acid (5 mmol, 0.761 g) and benzohydroxamic acid (1 mmol, 0.137 g) were placed in a Teflon-lined stainless vessel (15 mL), in which isopropanol (1 mL) and acetonitrile (5 mL) were added. After stirring for 5 min, Ti(O i Pr)4 (1.63 mmol, 0.5 mL) was added. The resulting mixture was sealed and heated at 373 K for 72 h under autogenous pressure. After cooling to room temperature at a rate of 5 K h−1, yellowish block crystals were obtained and washed with acetonitrile. The yield was 0.106 g (27%, based on mandelic acid).

Experimental details

H atoms were subsequently treated as riding atoms with distances C—H = 0.98 (CH3), 0.99 (CH) and 0.95 (ArH) Å.

Comment

In recent years, titanium oxo clusters (TOCs) have attracted much attention because their atomically precise molecular structures are ideal models for titanium dioxide (TiO2) [5], [6], [7]. Moreover, most reported TOCs exhibit photocatalytic activities, such as photocatalytic degradation, hydrogen production, and water oxidation [8], [9], [10]. The solvothermal synthetic approach using Ti(OR)4 as the titanium source have proven to be effective for construction TOCs, and a lot of TOCs with various nuclearities and diverse structures have been reported [11, 12]. Introduction of dye-functional ligands can enlarge the light-absorption range and reduce band gap values of TOCs, which is of great importance for photocatalytic applications. Generally, the dye-functional ligands for TOCs are characterized with C(sp2)–O or N(sp2)–O atoms as coordinative sites [13]. For example, catechol is a prevalent dye-functional ligand featuring C(sp2)–O as coordinative sites for construction TOCs with narrow band gap values [14]. To be noted, only a few TOCs protected by ligand with type of N(sp2)–O atom as coordinative site have been reported [15]. Herein, benzohydroxamic acid with N(sp2)–O atom was selected as dye-functional ligand to construct the title TOC.

The X-ray crystal diffraction revealed that the title compound crystallizes in the monoclinic system. There is one six-coordinated Ti4+ ion, two one deprotonated benzohydroxamate, one mandelate and one isopropoxide groups in the asymmetric unit. The dinuclear title complex is furnished by an inversion center (see the figure). Thus the two Ti4+ present the same coordination environments featuring the octahedral TiO6 mode. The six coordinated oxygen atoms belong to two mandelate ligands, one deprotonated benzohydroxamate and one isopropoxide groups respectively. Two μ 2–O-type atoms link the two Ti4+ ions together wtith the distance of 3.211 Å which is very close to the reported 3.222 Å of the TOC based on mandelic acid, and the average bond length of Ti–O is 1.956, almost the same as 1.963 Å of the reported structure [16].


Corresponding author: Yu Youzhu, School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, Henan, P. R. China, E-mail:

Award Identifier / Grant number: YPY2019003

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Foundation of Anyang Institute of Technology (YPY2019003).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2; Bruker AXS Inc.: Madison, Wisconsin, USA, 2005.Search in Google Scholar

2. Bruker. SAINT–Plus; Bruker AXS Inc.: Madison, Wisconsin, USA, 2001.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

4. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Version 3.2i; Crystal Impact: Bonn, Germany, 2012.Search in Google Scholar

5. Fang, W. H., Zhang, L., Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404–421; https://doi.org/10.1039/c7cs00511c.Search in Google Scholar PubMed

6. Yu, Y. Z., Guo, Y., Zhang, Y. R., Liu, M. M., Feng, Y. R., Geng, C. H., Zhang, X. M. A series of silver doped butterfly-like Ti8Ag2 clusters with two Ag ions panelled on a Ti8 surface. Dalton Trans. 2019, 48, 13423–13429; https://doi.org/10.1039/c9dt02508a.Search in Google Scholar PubMed

7. Zhang, G., Liu, C., Long, D.-L., Cronin, L., Tung, C.-H., Wang, Y. Water-soluble pentagonal-prismatic titanium-oxo clusters. J. Am. Chem. Soc. 2016, 138, 11097–11100; https://doi.org/10.1021/jacs.6b06290.Search in Google Scholar PubMed

8. Fang, W. H., Zhang, L., Zhang, J. A 3.6 nm Ti52 -oxo nanocluster with precise atomic structure. J. Am. Chem. Soc. 2016, 138, 7480–7483; https://doi.org/10.1021/jacs.6b03489.Search in Google Scholar PubMed

9. Wang, C., Wang, S. J., Kong, F. G. Calixarene-protected titanium-oxo clusters and their photocurrent responses and photocatalytic performances. Inorg. Chem. 2021, 60, 5034–5041; https://doi.org/10.1021/acs.inorgchem.1c00063.Search in Google Scholar PubMed

10. Lu, D. F., Kong, X. J., Lu, T. B., Long, L. S., Zheng, L. S. Heterometallic lanthanide-titanium oxo clusters: a new family of water oxidation catalysts. Inorg. Chem. 2017, 56, 1057–1060; https://doi.org/10.1021/acs.inorgchem.6b03072.Search in Google Scholar PubMed

11. Guo, Y.-H., Yu, Y.-Z., Niu, Y.-S., Wang, Z., Shi, W.-Y., Wu, X.-L. Solvothermal synthesis, crystal structure and photocurrent property of a Ti6 -core-based titanium oxo cluster. Chin. J. Struct. Chem. 2021, 40, 357–362.Search in Google Scholar

12. Liu, Y.-J., Fang, W.-H., Zhang, L., Zhang, J. Recent advances in heterometallic polyoxotitanium clusters. Coord. Chem. Rev. 2020, 404, 213099–213106; https://doi.org/10.1016/j.ccr.2019.213099.Search in Google Scholar

13. Yu, Y.-Z., Zhang, Y.-R., Geng, C.-H., Sun, L., Guo, Y., Feng, Y.-R., Wang, Y.-X., Zhang, X.-M. Precise and wide-ranged band-gap tuning of Ti6-core-based titanium oxo clusters by the type and number of chromophore ligands. Inorg. Chem. 2019, 58, 16785–16791; https://doi.org/10.1021/acs.inorgchem.9b02951.Search in Google Scholar PubMed

14. Wang, Y., Liu, C., Hu, J., Zhu, F., Zhan, J., Du, L., Tung, C. H. Functionalization of titanium-oxide cluster Ti17O24(OiC3H7)20 with catechols: structures and ligand-exchange reactivities. Chem. Eur J. 2019, 25, 14843–14849; https://doi.org/10.1002/chem.201902601.Search in Google Scholar PubMed

15. Chen, S., Fang, W.-H., Zhang, L., Zhang, J. Synthesis, structures, and photocurrent responses of polyoxo-titanium clusters with oxime ligands: from Ti4 to Ti18. Inorg. Chem. 2018, 57, 8850–8856; https://doi.org/10.1021/acs.inorgchem.8b00751.Search in Google Scholar PubMed

16. Yu, Y., Guo, Y., Niu, Y., Liu, N., Zhang, H. Crystal structure of bis(μ2-2-oxido-2-phenylacetate-κ3O:O,O′)-bis(1- isopropoxy-2-oxo-2-phenylethan-1-olato-κ2O,O′)-bis(propan-2- olato-κ1O)dititanium(IV), C44H52O14Ti2. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 467–469.10.1515/ncrs-2020-0590Search in Google Scholar

Received: 2022-06-22
Accepted: 2022-07-20
Published Online: 2022-08-11
Published in Print: 2022-10-26

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 3-(1-(2-((5-methylthiophen-2-yl)methylene)hydrazinyl)ethylidene)chroman-2,4-dione, C17H14N2O3S
  4. Crystal structure of chlorido-(η 6-toluene)(5,5′-dimethyl-2,2′-bipyridine-κ2 N,N′)ruthenium(II) hexafluoridophosphate(V) ─ acetone (1/1) C22H26ClN2ORuPF6
  5. Crystal structure of 4-(((2-(3-(1-(3-(3-cyanophenyl)-6-oxopyridazin-1(6H)-yl)ethyl)phenyl) pyrimidin-5-yl)oxy)methyl)-1-methylpiperidin-1-ium chloride monohydrate, C30H33N6O2Cl
  6. The crystal structure of 2-chloro-N-((2-chlorophenyl)carbamoyl)nicotinamide, C13H9Cl2N3O2
  7. Crystal structure of 9-(t-butyl)-3,11-dihydro-6H-pyrazolo [1,5-a]pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-6-one hemihydrate, C30H32N10O3
  8. Crystal structure of di-μ2-hydroxido-tetrakis(6-methylpyridine-2-carboxylato-k2 N,O) diiron(III) trihydrate C28H32Fe2N4O13
  9. Crystal structure of catena-poly[qua-(μ2-2-aminoisophthalat-κ3 O,O′:O′′)(1,10-phenanthroline-κ2 N,N′)manganese(II)] C20H15MnN3O5
  10. Crystal structure of poly[(bis(isothiocyano)-bis(μ 2-(E)-N′-(pyridin-4-ylmethylene)isonicotinohydrazide))iron(II) – methanol – 1,4-dioxane (1/2/2), C36H44FeN10O8S2
  11. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl)propylidene)-4-hydroxybenzohydrazide, C16H15ClN2O3
  12. Crystal structure of bis(μ2-benzoato-k2O:O′)-bis(μ2-benzoato-k3O,O′:O′)dinitrato-k2O,O′-bis(phenanthroline-k2 N,N′)dierbium(III), C52H36Er2N6O14
  13. Crystal structure of 4-ethyl-2-{[(4-nitrophenyl)methyl]sulfanyl}-6-oxo-1,6-dihydropyrimidine-5-carbonitrile, C14H12N4O3S
  14. Synthesis and crystal structure of 1-((3R,10S,13R,17S)-10,13-dimethyl-3- (phenylamino)hexadecahydro-1H-cyclopenta[α] phenanthren-17-yl)ethan-1-one, C27H39NO
  15. Crystal structre of 1,4-bis(bromomethyl)-2,3,5,6-tetramethylbenzene, C12H16Br2
  16. Crystal structure of 2-(adamantan-1-yl)-5-(3,5-dinitrophenyl)-1,3,4-oxadiazole, C18H18N4O5
  17. Crystal structure of (E)-N′-benzylidene-4-nitrobenzohydrazide – methanol (1/1), C15H15N3O4
  18. The crystal structure of 3-(2-bromophenyl)-1,5-di-p-tolylpentane-1,5-dione, C25H23BrO2
  19. Crystal structure of catena-poly[(μ 2-4,4′-bipyridine-κ2 N:N′)-bis(4-bromobenzoato-κ1 O)zinc(II)], C24H16Br2N2O4Zn
  20. Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)zinc(II), C20H14N6ZnS4
  21. Crystal structure of pentacarbonyl-(μ2-propane-1,3-dithiolato-κ4 S:S,S′:S′)-(diphenyl(o-tolyl)phosphine-κ1 P)diiron (Fe-Fe), C27H23Fe2O5PS2
  22. The crystal structure of the cocrystal 4-hydroxy-3,5-dimethoxybenzoic acid–pyrazine-2-carboxamide(1/1), C14H15N3O6
  23. The crystal structure of dichlorido-bis((RS)-2-(4-chlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)hexanenitrile-κ1 N)zinc(II), C30H34Cl4N8Zn
  24. Crystal structure of the cocrystal 2,4,6-triamino-1,3,5-triazine – 1H-isoindole-1,3(2H)-dione – methanol (1/1/1), C12H15N7O3
  25. The crystal structure of methyl 4-((3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl) benzoate, C23H28O3
  26. Crystal structure of (poly[µ2-(1H-pyrazol-1-yl)methyl]-1H-benzotriazole-κ 2 N:N)-(nitrato-κ 2 O:O′) silver(I), C9H8AgN7O3
  27. Crystal structure of tetraaqua-bis[4-(1H-1,2,4-triazol-1-yl)benzoato-k1 N]cadmium(II), C18H20CdN6O8
  28. The crystal structure of diaqua-bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)nickel(II) dihydrate, C14H16N6O8Ni
  29. Crystal structure of poly[μ2-aqua-aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)-(μ2-4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ2 O:O′)-(μ4-4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ5 O,O′:O″:O′″:O′″)dicobalt(II)] – water – dimethylformamide (1/1/1) C44H43N11O12Co2
  30. Crystal structure of N-((Z)-amino(((E)-amino(phenylamino)methylene) amino)methylene)benzenaminium chloride – benzo[f]isoquinolino[3,4-b][1,8]naphthyridine – tetrahydrofurane (1/2/2), C60H54ClN11O2
  31. The crystal structure of Chrysosplenol D, C18H16O8
  32. Crystal structure of poly[deca aqua-bis(μ 4-2-(triazol-1-yl)-benzene-1,3,5-tricarboxylato)- bis(μ 5-2-(triazol-1-yl)-benzene-1,3-dicarboxylato-5-carboxyl acid) pentamanganese(II)] dihydrate, C44H42Mn5N12O36
  33. Synthesis and crystal structure of (E)-1-(4-(((E)-3-(tert-butyl)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C20H24N2O2
  34. The crystal structure of 4,4′-dichloro-6,6′-dimethoxy-2,2′,3,3′,5,5′- hexanitroazobenzene, C14H6N8O14Cl2
  35. Crystal structure of N 2,N 4-dimesitylpentane-2,4-diamine, C23H34N2
  36. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ 6O6)potassium(2-methylphenylamino)ethyl-2-methylphenylamide ammoniate (1/3.5), [K(18-crown-6)](o-CH3C6H4)NH(CH2)2N(o-CH3C6H4) 3.5 NH3, C28H53.5KN5.5O6
  37. The crystal structure of N′,N″,2-tris((E)-5-chloro-2-hydroxybenzylidene)hydrazine-1-carbohydrazonhydrazide hydrochloride – methanol (1/3), C25H30Cl4N6O6
  38. Crystal structure of (E)-7-bromo-2-(3,5-dimethoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H17BrO3
  39. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)-4-hydroxybenzohydrazide, C15H13ClN2O3
  40. {2-(((2-aminoethyl)imino)methyl)-6-bromophenolato-κ3 N,N′,O}iron(III) nitrate, C18H20Br2FeN5O5
  41. Crystal structure of 2-(tert-pentyl)anthracene-9,10-dione, C19H18O2
  42. Crystal structure of 5,5′-(1,4-phenylene)bis(1H-imidazol-3-ium) bis(2-(2-(carboxymethyl)phenyl)acetate), C32H30N4O8
  43. Crystal structure of N 2,N 6-bis(2-(((E)-naphthalen-1-ylmethylene)amino)phenyl)pyridine-2,6-dicarboxamide, C41H29N5O2
  44. The crystal structure of 3-amino-1,2,4-triazolium 2,4,5-trinitroimidazolate, C5H5O6N9
  45. Hydrogen bonded dimers in the crystal structure of 2-chloro-N-(phenylcarbamoyl)nicotinamide, C26H20Cl2N6O4
  46. The crystal structure of 4,4′-bipyridine-5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one-water(1/2/2), C40H32N2O12
  47. Crystal structure of N,N'-bis(4-fluoro-salicylaldehyde)-3,6-dioxa-1,8-diaminooctane, C20H22F2N2O4
  48. Crystal structure of 3-(1,3-dinitropropan-2-yl)-4H-chromen-4-one, C12H10N2O6
  49. The crystal structure of (4-(2-bromoethoxy)-phenyl)(phenyl)methanone, C15H13BrO2
  50. Crystal structure of (E)-7-bromo-2-(4-methoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C18H15BrO2
  51. Crystal structure of dichlorido-tetrakis((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)cadmium(II), C60H68O4N12Cl10Cd
  52. Crystal structure of diaqua-diphenanthroline-κ2 N,N′-bis(μ2-2-carboxy-3,4,5,6-tetrafluorobenzoato-κ2 O:O′)-bis(μ2-tetrafluorophthalato-κ3 O,O′:O′)didysprosium(III) – phenanthroline (1/2), C80H38Dy2F16N8O18
  53. Crystal structure of bis(μ2-2-oxido-2-phenylacetato-κ3 O,O′:O′)-bis(N-oxido-benzamide-κ2 O,O′)-bis(propan-2-olato-κ1 O)dititanium(IV), C36H38N2O12Ti2
  54. Crystal structure of poly[diaqua-(μ2-1H-benzo[d][1,2,3]triazole-5-carboxylato-κ2 O:O′)(μ2-oxalato-κ4O,O:O″,O′″)europium(III)] monohydrate, C9H10N3O9Eu
  55. Crystal structure of bis((N-methyl-2-oxyethyl)amine)-bis(μ 2-N,N,N-tris(2-oxoethyl)amine)-bis(isopropoxy)-bis(μ 3-oxo)tetratitanium(IV)– isopropanol (1/2), C34H76N4O16Ti4
  56. Synthesis and crystal structure of ethyl 4-((4-iodobenzyl)amino)benzoate, C16H16INO2
  57. Crystal structure of (Z)-2-(tert-butyl)-5-((5-(tert- butyl)-2H-pyrrol-2-ylidene)(mesityl)methyl)-1H-pyrrole, C26H34N2
  58. Crystal structure of dimethylammonium poly[μ4-1,1′-(1,4- phenylenebis(methylene))bis(1H-pyrazole-3,5-dicarboxylato-κ6 N,O:O′:N′,O″:O‴) manganese(II)], C22H26MnN6O8
Downloaded on 10.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0326/html
Scroll to top button