Home Physical Sciences Crystal structure of poly[diaqua-(μ2-1H-benzo[d][1,2,3]triazole-5-carboxylato-κ2 O:O′)(μ2-oxalato-κ4O,O:O″,O′″)europium(III)] monohydrate, C9H10N3O9Eu
Article Open Access

Crystal structure of poly[diaqua-(μ2-1H-benzo[d][1,2,3]triazole-5-carboxylato-κ2 O:O′)(μ2-oxalato-κ4O,O:O″,O′″)europium(III)] monohydrate, C9H10N3O9Eu

  • Tian Zhang ORCID logo EMAIL logo and Hua Bing Li
Published/Copyright: August 15, 2022

Abstract

C9H10N3O9Eu, triclinic, P 1 (no. 2), a = 7.9645(5) Å, b = 9.2934(6) Å, c = 10.0409(6) Å, α = 66.8554(8)°, β = 72.9671(8)°, γ = 83.4968(9)°, V = 653.41(7) Å3, Z = 2, R gt (F) = 0.0210, wR ref (F 2) = 0.0522, T = 296(3) K.

CCDC no.: 2191541

A part of the title crystal structure is shown in the figure (One solvent water molecule was omitted for clarity). Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.25 × 0.21 × 0.17 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 4.86 mm−1
Diffractometer, scan mode: Bruker SMART APEX, ω
θ max, completeness: 27.5°, 99%
N(hkl)measured, N(hkl)unique, R int: 3996, 2883, 0.010
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2796
N(param)refined: 220
Programs: Bruker [1], SHELX [2, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Eu1 0.62212 (2) 0.44800 (2) 0.20524 (2) 0.01333 (6)
O1 0.4997 (4) 0.2378 (3) 0.2018 (3) 0.0313 (6)
O2 0.4358 (4) 0.3431 (3) −0.0165 (3) 0.0330 (6)
O3 0.8193 (3) 0.4267 (3) −0.0185 (3) 0.0273 (5)
O4 1.1013 (3) 0.4404 (3) −0.1486 (3) 0.0289 (6)
O5 0.6051 (4) 0.6276 (3) 0.3203 (3) 0.0292 (6)
O6 0.4915 (4) 0.6718 (3) 0.5323 (3) 0.0294 (6)
O1W 0.8224 (4) 0.2423 (3) 0.2845 (3) 0.0345 (6)
H1WA 0.796 (7) 0.147 (2) 0.317 (6) 0.052*
H1WB 0.879 (6) 0.247 (6) 0.342 (5) 0.052*
O2W 0.3135 (4) 0.4993 (4) 0.2690 (3) 0.0350 (6)
H2WA 0.266 (7) 0.530 (6) 0.197 (4) 0.052*
H2WB 0.233 (5) 0.444 (5) 0.343 (4) 0.052*
O3W 0.6729 (6) −0.0331 (4) 0.3535 (7) 0.0797 (15)
H3WA 0.569 (2) 0.002 (5) 0.366 (10) 0.120*
H3WB 0.643 (11) −0.127 (4) 0.409 (8) 0.120*
N1 0.0391 (5) −0.2174 (4) 0.4779 (4) 0.0343 (7)
N2 −0.0506 (5) −0.3108 (4) 0.4546 (4) 0.0364 (8)
N3 −0.0168 (5) −0.2722 (4) 0.3052 (4) 0.0325 (7)
H3 −0.068 (6) −0.324 (5) 0.269 (5) 0.039*
C1 0.4241 (5) 0.2349 (4) 0.1090 (4) 0.0238 (7)
C2 0.3124 (5) 0.0958 (4) 0.1529 (4) 0.0250 (7)
C3 0.2435 (5) 0.0088 (4) 0.3038 (4) 0.0291 (8)
H3A 0.269456 0.031408 0.377970 0.035*
C4 0.1324 (5) −0.1153 (4) 0.3398 (4) 0.0289 (8)
C5 0.0973 (5) −0.1505 (4) 0.2276 (4) 0.0288 (8)
C6 0.1721 (5) −0.0658 (5) 0.0744 (5) 0.0329 (8)
H6 0.151679 −0.092300 0.000339 0.040*
C7 0.2770 (5) 0.0582 (5) 0.0393 (4) 0.0303 (8)
H7 0.326360 0.119359 −0.061320 0.036*
C8 0.9762 (4) 0.4617 (4) −0.0477 (4) 0.0219 (7)
C9 0.5281 (4) 0.5863 (4) 0.4567 (4) 0.0223 (7)

Source of material

An organic compound 1H benzo[d][1,2,3] triazole-5-carboxylic acid (Btac), 0.033 g, 0.2 mmol) was stired in a solution of water/alcohol (v/v = 1.2, 10 mL) and was mixed with an aqueous solution 0.2 mmol Eu(NO3)3. 6H2O, (0.2 mmol, 0.042 g) and sodium oxalate dihydrate (0.0252 g, 0.2 mmol). After stirring for 30 min in air, the pH value was adjusted to 4.5 using nitric acid. The mixture was placed into a 25 mL Teflon-lined autoclave under autogenous pressure being heated at 151 °C for 60 h, and then the autoclave was cooled over a period of 24 h at a rate 5 °C/h. After filtration, the products were washed with distilled water and then dried, colorless crystals were obtained suitable for X-ray diffraction analysis. Yield: 0.0512 g (48%) based on europium element. Elemental analysis (%): calcd for C9H10N3O9Eu: C 23.70, H 2.21 N 9.21, found: C 23.52, H 2.31, N 9.16. IR (KBr pellet, cm-1): 3410 versus, 3026 s, 2964 m, 1596 s, 1423 m, 1394 s, 1253 m, 1176 s, 781 m.

Experimental details

Positions of hydrogen atoms of water were located from the difference Fourier syntheses and refined. All U iso values were restrained on U eq values of the parent atoms.

Comment

Recent decades witnessed that the lanthanide coordination polymers (CPs) have made numerous advances and have aroused broad interesting in chemistry and materials fields, owing to their exceptional luminescence properties and intriguing framework (network) structures [4], [5], [6]. The series of europium(III) complex based on the congujated aromatic acid have been explored, which exhibited their intriguing architectures as well as diversity of functions, such as luminescence properties [7]. However, it deserves to be noted that luminescence-structure relationship for europium(III) complexes are still scarce, and more examples are required to display the solid basis to analyze the factors involved and then to establish a definitive fluorescence-structural correlation. This contribution is apart of a study that investigates the coordination behavior and role of Eu(III) during the selfassembly processes in the presence of multidentate dicarboxylate and 1H-ben-zotriazoles ligand, which can facilitate the formation of peptide bonds mixed ligands [8] Single-crystal X-ray diffraction study reveals that the asymmetric unit contains one Eu(III) ion, one Btac- ligand, one oxalate ligand and two coordination water molecules, and one free water molecule.

In the basic unit, the best geometry around Eu(III) ion is decribed as a distorted square-antiprism, and central Eu cation is eight coordinated with a O8 donor set, among which, four oxygen atoms are provided from two oxalate moieties, two oxygen atoms are derivatded from the deprotonated Btac- ligands, and two oxygen atoms orginated from two water molecules completed dodecahedron coordiantion geometry. The nitrogen atoms form Btac- did not take part in coordination with metal ions. Both oxalate and the Btac- ligand are completely protonated. Btac- ligand employs mono bridging fashions to coordinate. The oxalate adopts the bis(chelating) coordination fashions linking two adjacent central Eu ions into binuclear units with the shortest seperation of Eu(III) … Eu(III) of 6.1485 Å. Btac- uses both carboxylate oxygens to link Eu(III) ions into a binuclear unit with seperation of Eu(III) … Eu(III) to be 4.780 Å. While, in another benzotriazole-5-carboxyate-based Eu complex containing 4,4′-bpy moiety, each EuIII ion is also located at a tetragonal antiprismatic arrangement, but it is coordinated by eight oxygen atoms of five Btac- ligands and two water molecules [9]. Furthermore, six neighboring binuclear units are alternately connected by oxalte and 1H-benzo-triazole-5-carboxylato oxygens into six ring cycle in the same plane, with macro window of 13.33 × 7.96 Å dimension. This coordiantion fashion in this case is also observed in another luminescent phosphonate-decorated lanthanide oxalates [10], or previous reported lanthanide coordination polymer [11]. But it is essentially not comparable with oxalate bridged lanthanide metal organic framework with 2,3-thiophenedicarboxylate ligand [12]. These six member ring cycles are further connected by oxalate into the final two dimensional network. On the other hand binuclear units are connected by oxalate oxygen into an one dimensional zigzag chain. Furthermore, binuclear units are connected by carboxylate oxygen from the Btac- ligand in to an one dimensional chain. These chains are further interlinked through carboxylate oxygen into two dimensional layer array, with Btac- moieties as arms being located along up and down sides. This coordiantion fashion is silmar to the known lanthanide coordiantion polymer based on Btac- [11].


Corresponding author: Tian Zhang, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471934, P. R. China, E-mail:

Award Identifier / Grant number: U1804131

Award Identifier / Grant number: 21IRTSTHN004

  1. Research funding: This work was supported by the National Natural Science Foundation of China (No. U1804131) and the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 21IRTSTHN004).

  2. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. BRUKER. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sun, Y. L., Feng, X., Guo, N., Wang, L. Y., Li, R.-F., Bai, R.-F. A novel europium coordination polymer based on mixed carboxylic acid ligands: synthesis, structure and luminescence. Inorg. Chem. Commun. 2016, 67, 90–94; https://doi.org/10.1016/j.inoche.2016.03.006.Search in Google Scholar

5. Feng, X., Wang, J. G., Liu, B., Wang, L. Y., Zhao, J. S., Ng, S. W. From 2D double decker architecture to 3D Pcu framework with 1D tube: syntheses, structures, luminescent and magnetic studies. Cryst. Growth Des. 2012, 12, 927–938; https://doi.org/10.1021/cg2013717.Search in Google Scholar

6. Li, D. S., Wu, Y. P., Zhao, J., Zhang, J., Lu, J. Y. Metal-organic frameworks based upon non-zeotype 4-connected topology. Coord. Chem. Rev. 2014, 261, 1–27; https://doi.org/10.1016/j.ccr.2013.11.004.Search in Google Scholar

7. Feng, X., Wang, J. G., Liu, B., Wang, L.-Y., Zhao, J. S., Ng, S. W. From two-dimensional double decker architecture to three-dimensional pcu framework with one-dimensional tube: syntheses, structures, luminescence, and magnetic studies. Cryst. Growth Des. 2012, 12, 927–938; https://doi.org/10.1021/cg2013717.Search in Google Scholar

8. Han, M. L., Wen, G. X., Dong, W. W., Zhou, Z. H., Wu, Y.-P., Zhao, J., Li, D.-S., Ma, L.-F., Bu, X. A heterometallic sodium-europium-cluster- based metal- organic framework as a versatile and water-stable chemosensor for antibiotics and explosives. J. Mater. Chem. C 2017, 5, 8469–8474; https://doi.org/10.1039/c7tc02885g.Search in Google Scholar

9. Sun, C. Y., Zhou, D., Li, Y., Li, W. J., Kang, Z. T. Syntheses, structures, and fluorescent properties of lanthanide complexes based on the ligand benzotriazole-5-carboxylic acid. Z. Anorg. Allg. Chem. 2014, 640, 2498–2502; https://doi.org/10.1002/zaac.201400259.Search in Google Scholar

10. Song, J.-L., Mao, J. G. New types of blue, red or near IR luminescent phosphonate-decorated lanthanide oxalates. Chem. Eur. J. 2005, 11, 1417–1424; https://doi.org/10.1002/chem.200400889.Search in Google Scholar PubMed

11. Feng, X., Guo, N., Li, R.-F., Chen, H. P., Ma, L. F., Li, Z. J., Wang, L. Y. A facile route for tuning emission and magnetic properties by controlling lanthanide ions in coordination polymers incorporating mixed aromatic carboxylate ligands. J. Solid State Chem. 2018, 268, 22–29; https://doi.org/10.1016/j.jssc.2018.08.017.Search in Google Scholar

12. Li, Z. H., Xue, L.-P., Shan, L. L., Zhao, B.-T., Kan, J., Su, W. P. Hydrogen bonded-extended lanthanide coordination polymers decorated with 2,3-thiophenedicarboxylate and oxalate: synthesis, structures, and properties. CrystEngComm 2014, 16, 10824–10829; https://doi.org/10.1039/c4ce01734j.Search in Google Scholar

Received: 2022-06-29
Accepted: 2022-07-20
Published Online: 2022-08-15
Published in Print: 2022-10-26

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 3-(1-(2-((5-methylthiophen-2-yl)methylene)hydrazinyl)ethylidene)chroman-2,4-dione, C17H14N2O3S
  4. Crystal structure of chlorido-(η 6-toluene)(5,5′-dimethyl-2,2′-bipyridine-κ2 N,N′)ruthenium(II) hexafluoridophosphate(V) ─ acetone (1/1) C22H26ClN2ORuPF6
  5. Crystal structure of 4-(((2-(3-(1-(3-(3-cyanophenyl)-6-oxopyridazin-1(6H)-yl)ethyl)phenyl) pyrimidin-5-yl)oxy)methyl)-1-methylpiperidin-1-ium chloride monohydrate, C30H33N6O2Cl
  6. The crystal structure of 2-chloro-N-((2-chlorophenyl)carbamoyl)nicotinamide, C13H9Cl2N3O2
  7. Crystal structure of 9-(t-butyl)-3,11-dihydro-6H-pyrazolo [1,5-a]pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-6-one hemihydrate, C30H32N10O3
  8. Crystal structure of di-μ2-hydroxido-tetrakis(6-methylpyridine-2-carboxylato-k2 N,O) diiron(III) trihydrate C28H32Fe2N4O13
  9. Crystal structure of catena-poly[qua-(μ2-2-aminoisophthalat-κ3 O,O′:O′′)(1,10-phenanthroline-κ2 N,N′)manganese(II)] C20H15MnN3O5
  10. Crystal structure of poly[(bis(isothiocyano)-bis(μ 2-(E)-N′-(pyridin-4-ylmethylene)isonicotinohydrazide))iron(II) – methanol – 1,4-dioxane (1/2/2), C36H44FeN10O8S2
  11. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl)propylidene)-4-hydroxybenzohydrazide, C16H15ClN2O3
  12. Crystal structure of bis(μ2-benzoato-k2O:O′)-bis(μ2-benzoato-k3O,O′:O′)dinitrato-k2O,O′-bis(phenanthroline-k2 N,N′)dierbium(III), C52H36Er2N6O14
  13. Crystal structure of 4-ethyl-2-{[(4-nitrophenyl)methyl]sulfanyl}-6-oxo-1,6-dihydropyrimidine-5-carbonitrile, C14H12N4O3S
  14. Synthesis and crystal structure of 1-((3R,10S,13R,17S)-10,13-dimethyl-3- (phenylamino)hexadecahydro-1H-cyclopenta[α] phenanthren-17-yl)ethan-1-one, C27H39NO
  15. Crystal structre of 1,4-bis(bromomethyl)-2,3,5,6-tetramethylbenzene, C12H16Br2
  16. Crystal structure of 2-(adamantan-1-yl)-5-(3,5-dinitrophenyl)-1,3,4-oxadiazole, C18H18N4O5
  17. Crystal structure of (E)-N′-benzylidene-4-nitrobenzohydrazide – methanol (1/1), C15H15N3O4
  18. The crystal structure of 3-(2-bromophenyl)-1,5-di-p-tolylpentane-1,5-dione, C25H23BrO2
  19. Crystal structure of catena-poly[(μ 2-4,4′-bipyridine-κ2 N:N′)-bis(4-bromobenzoato-κ1 O)zinc(II)], C24H16Br2N2O4Zn
  20. Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)zinc(II), C20H14N6ZnS4
  21. Crystal structure of pentacarbonyl-(μ2-propane-1,3-dithiolato-κ4 S:S,S′:S′)-(diphenyl(o-tolyl)phosphine-κ1 P)diiron (Fe-Fe), C27H23Fe2O5PS2
  22. The crystal structure of the cocrystal 4-hydroxy-3,5-dimethoxybenzoic acid–pyrazine-2-carboxamide(1/1), C14H15N3O6
  23. The crystal structure of dichlorido-bis((RS)-2-(4-chlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)hexanenitrile-κ1 N)zinc(II), C30H34Cl4N8Zn
  24. Crystal structure of the cocrystal 2,4,6-triamino-1,3,5-triazine – 1H-isoindole-1,3(2H)-dione – methanol (1/1/1), C12H15N7O3
  25. The crystal structure of methyl 4-((3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl) benzoate, C23H28O3
  26. Crystal structure of (poly[µ2-(1H-pyrazol-1-yl)methyl]-1H-benzotriazole-κ 2 N:N)-(nitrato-κ 2 O:O′) silver(I), C9H8AgN7O3
  27. Crystal structure of tetraaqua-bis[4-(1H-1,2,4-triazol-1-yl)benzoato-k1 N]cadmium(II), C18H20CdN6O8
  28. The crystal structure of diaqua-bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)nickel(II) dihydrate, C14H16N6O8Ni
  29. Crystal structure of poly[μ2-aqua-aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)-(μ2-4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ2 O:O′)-(μ4-4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ5 O,O′:O″:O′″:O′″)dicobalt(II)] – water – dimethylformamide (1/1/1) C44H43N11O12Co2
  30. Crystal structure of N-((Z)-amino(((E)-amino(phenylamino)methylene) amino)methylene)benzenaminium chloride – benzo[f]isoquinolino[3,4-b][1,8]naphthyridine – tetrahydrofurane (1/2/2), C60H54ClN11O2
  31. The crystal structure of Chrysosplenol D, C18H16O8
  32. Crystal structure of poly[deca aqua-bis(μ 4-2-(triazol-1-yl)-benzene-1,3,5-tricarboxylato)- bis(μ 5-2-(triazol-1-yl)-benzene-1,3-dicarboxylato-5-carboxyl acid) pentamanganese(II)] dihydrate, C44H42Mn5N12O36
  33. Synthesis and crystal structure of (E)-1-(4-(((E)-3-(tert-butyl)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C20H24N2O2
  34. The crystal structure of 4,4′-dichloro-6,6′-dimethoxy-2,2′,3,3′,5,5′- hexanitroazobenzene, C14H6N8O14Cl2
  35. Crystal structure of N 2,N 4-dimesitylpentane-2,4-diamine, C23H34N2
  36. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ 6O6)potassium(2-methylphenylamino)ethyl-2-methylphenylamide ammoniate (1/3.5), [K(18-crown-6)](o-CH3C6H4)NH(CH2)2N(o-CH3C6H4) 3.5 NH3, C28H53.5KN5.5O6
  37. The crystal structure of N′,N″,2-tris((E)-5-chloro-2-hydroxybenzylidene)hydrazine-1-carbohydrazonhydrazide hydrochloride – methanol (1/3), C25H30Cl4N6O6
  38. Crystal structure of (E)-7-bromo-2-(3,5-dimethoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H17BrO3
  39. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)-4-hydroxybenzohydrazide, C15H13ClN2O3
  40. {2-(((2-aminoethyl)imino)methyl)-6-bromophenolato-κ3 N,N′,O}iron(III) nitrate, C18H20Br2FeN5O5
  41. Crystal structure of 2-(tert-pentyl)anthracene-9,10-dione, C19H18O2
  42. Crystal structure of 5,5′-(1,4-phenylene)bis(1H-imidazol-3-ium) bis(2-(2-(carboxymethyl)phenyl)acetate), C32H30N4O8
  43. Crystal structure of N 2,N 6-bis(2-(((E)-naphthalen-1-ylmethylene)amino)phenyl)pyridine-2,6-dicarboxamide, C41H29N5O2
  44. The crystal structure of 3-amino-1,2,4-triazolium 2,4,5-trinitroimidazolate, C5H5O6N9
  45. Hydrogen bonded dimers in the crystal structure of 2-chloro-N-(phenylcarbamoyl)nicotinamide, C26H20Cl2N6O4
  46. The crystal structure of 4,4′-bipyridine-5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one-water(1/2/2), C40H32N2O12
  47. Crystal structure of N,N'-bis(4-fluoro-salicylaldehyde)-3,6-dioxa-1,8-diaminooctane, C20H22F2N2O4
  48. Crystal structure of 3-(1,3-dinitropropan-2-yl)-4H-chromen-4-one, C12H10N2O6
  49. The crystal structure of (4-(2-bromoethoxy)-phenyl)(phenyl)methanone, C15H13BrO2
  50. Crystal structure of (E)-7-bromo-2-(4-methoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C18H15BrO2
  51. Crystal structure of dichlorido-tetrakis((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)cadmium(II), C60H68O4N12Cl10Cd
  52. Crystal structure of diaqua-diphenanthroline-κ2 N,N′-bis(μ2-2-carboxy-3,4,5,6-tetrafluorobenzoato-κ2 O:O′)-bis(μ2-tetrafluorophthalato-κ3 O,O′:O′)didysprosium(III) – phenanthroline (1/2), C80H38Dy2F16N8O18
  53. Crystal structure of bis(μ2-2-oxido-2-phenylacetato-κ3 O,O′:O′)-bis(N-oxido-benzamide-κ2 O,O′)-bis(propan-2-olato-κ1 O)dititanium(IV), C36H38N2O12Ti2
  54. Crystal structure of poly[diaqua-(μ2-1H-benzo[d][1,2,3]triazole-5-carboxylato-κ2 O:O′)(μ2-oxalato-κ4O,O:O″,O′″)europium(III)] monohydrate, C9H10N3O9Eu
  55. Crystal structure of bis((N-methyl-2-oxyethyl)amine)-bis(μ 2-N,N,N-tris(2-oxoethyl)amine)-bis(isopropoxy)-bis(μ 3-oxo)tetratitanium(IV)– isopropanol (1/2), C34H76N4O16Ti4
  56. Synthesis and crystal structure of ethyl 4-((4-iodobenzyl)amino)benzoate, C16H16INO2
  57. Crystal structure of (Z)-2-(tert-butyl)-5-((5-(tert- butyl)-2H-pyrrol-2-ylidene)(mesityl)methyl)-1H-pyrrole, C26H34N2
  58. Crystal structure of dimethylammonium poly[μ4-1,1′-(1,4- phenylenebis(methylene))bis(1H-pyrazole-3,5-dicarboxylato-κ6 N,O:O′:N′,O″:O‴) manganese(II)], C22H26MnN6O8
Downloaded on 20.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0336/html
Scroll to top button