Home Crystal structure of (Z)-2-(tert-butyl)-5-((5-(tert- butyl)-2H-pyrrol-2-ylidene)(mesityl)methyl)-1H-pyrrole, C26H34N2
Article Open Access

Crystal structure of (Z)-2-(tert-butyl)-5-((5-(tert- butyl)-2H-pyrrol-2-ylidene)(mesityl)methyl)-1H-pyrrole, C26H34N2

  • Yingfan Liu EMAIL logo and Zhiqiang Zhao
Published/Copyright: August 15, 2022

Abstract

C26H34N2, orthorhombic, Pbca (no. 61), a = 14.8062(2) Å, b = 15.8918(2) Å, c = 20.0121(3) Å, V = 4708.79(11) Å3, Z = 8, Rgt (F) = 0.0548, wRref (F 2) = 0.1701, T = 296.2 K.

CCDC no.: 2179438

The molecular structure is shown in the Figure 1. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Figure 1: 
A view of the molecule. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
Figure 1:

A view of the molecule. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.40 × 0.25 × 0.20 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 0.46 mm−1
Diffractometer, scan mode: SuperNova, ω
θ max, completeness: 66.6°, >99%
N(hkl)measured, N(hkl)unique, R int: 8907, 4155, 0.016
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3592
N(param)refined: 298
Programs: CrysAlisPRO [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.52466 (11) 0.28852 (10) 0.58026 (9) 0.0555 (4)
C2 0.60593 (12) 0.24062 (11) 0.57549 (11) 0.0673 (5)
H2 0.610364 0.183953 0.564378 0.081*
C3 0.67571 (11) 0.29312 (10) 0.59020 (10) 0.0623 (4)
H3 0.736728 0.279259 0.590705 0.075*
C4 0.63775 (10) 0.37299 (9) 0.60463 (9) 0.0533 (4)
C5 0.68041 (10) 0.44658 (9) 0.62482 (8) 0.0507 (4)
C6 0.63472 (10) 0.52193 (10) 0.64032 (8) 0.0531 (4)
C7 0.66921 (11) 0.59968 (11) 0.66177 (10) 0.0632 (5)
H7 0.729647 0.612591 0.669203 0.076*
C8 0.59701 (12) 0.65320 (11) 0.66976 (11) 0.0679 (5)
H8 0.599879 0.709114 0.683296 0.081*
C9 0.51827 (11) 0.60839 (10) 0.65383 (9) 0.0573 (4)
C10 0.42905 (11) 0.25767 (11) 0.57144 (10) 0.0622 (4)
C11 0.40300 (17) 0.21140 (19) 0.63540 (14) 0.1021 (8)
H11A 0.444994 0.166476 0.643331 0.153*
H11B 0.343241 0.188699 0.630776 0.153*
H11C 0.404367 0.249928 0.672335 0.153*
C12 0.42317 (17) 0.19595 (19) 0.51390 (15) 0.1060 (9)
H12A 0.436326 0.224554 0.472781 0.159*
H12B 0.363368 0.172748 0.511901 0.159*
H12C 0.466088 0.151455 0.520552 0.159*
C13 0.36484 (14) 0.33030 (15) 0.56057 (18) 0.1059 (9)
H13A 0.369991 0.369275 0.597019 0.159*
H13B 0.304055 0.309474 0.558270 0.159*
H13C 0.379672 0.358300 0.519499 0.159*
C14 0.42112 (11) 0.63734 (11) 0.65556 (10) 0.0651 (5)
C15a 0.3560 (2) 0.5660 (3) 0.6393 (3) 0.1149 (15)
H15Aa 0.295005 0.586189 0.642424 0.172*
H15Ba 0.364666 0.520811 0.670440 0.172*
H15Ca 0.367217 0.546166 0.594759 0.172*
C16a 0.4091 (4) 0.7125 (4) 0.6153 (3) 0.1174 (16)
H16Aa 0.349997 0.735386 0.623092 0.176*
H16Ba 0.415266 0.698385 0.568859 0.176*
H16Ca 0.453945 0.753397 0.627247 0.176*
C17a 0.3989 (3) 0.6597 (4) 0.7304 (2) 0.1071 (12)
H17Aa 0.435861 0.706073 0.744460 0.161*
H17Ba 0.411064 0.611742 0.758191 0.161*
H17Ca 0.336394 0.674825 0.734211 0.161*
C18 0.78122 (10) 0.44651 (9) 0.63274 (8) 0.0492 (4)
C19 0.81994 (11) 0.41134 (11) 0.69009 (8) 0.0583 (4)
C20 0.91302 (11) 0.41580 (12) 0.69813 (10) 0.0637 (5)
H20 0.938919 0.392233 0.736103 0.076*
C21 0.96828 (11) 0.45396 (10) 0.65172 (10) 0.0610 (4)
C22 0.92876 (11) 0.48623 (10) 0.59463 (9) 0.0589 (4)
H22 0.965293 0.510874 0.562283 0.071*
C23 0.83599 (10) 0.48293 (9) 0.58415 (8) 0.0517 (4)
C24 0.76315 (14) 0.37023 (17) 0.74355 (11) 0.0906 (7)
H24A 0.793851 0.373839 0.785706 0.136*
H24B 0.753473 0.312193 0.732342 0.136*
H24C 0.706013 0.398526 0.746605 0.136*
C25 1.06853 (13) 0.46107 (15) 0.66407 (15) 0.0896 (7)
H25A 1.093705 0.502714 0.634740 0.134*
H25B 1.096740 0.407707 0.655703 0.134*
H25C 1.078917 0.477297 0.709636 0.134*
C26 0.79699 (14) 0.51802 (13) 0.52054 (10) 0.0747 (5)
H26A 0.761443 0.475565 0.498795 0.112*
H26B 0.845131 0.535289 0.491482 0.112*
H26C 0.759503 0.565602 0.530770 0.112*
N1 0.54405 (9) 0.36660 (8) 0.59755 (7) 0.0539 (3)
N2 0.54158 (9) 0.53041 (8) 0.63599 (7) 0.0547 (4)
H2Ab 0.504708 0.491540 0.623752 0.066*
H1c 0.508 (2) 0.4088 (19) 0.600 (2) 0.067 (14)*
C15Ad 0.3787 (4) 0.6158 (6) 0.5844 (4) 0.098 (2)
H15Dd 0.314012 0.619234 0.586916 0.148*
H15Ed 0.395949 0.559848 0.571504 0.148*
H15Fd 0.400423 0.655238 0.551819 0.148*
C16Ad 0.4166 (6) 0.7334 (4) 0.6600 (6) 0.111 (3)
H16Dd 0.446273 0.757560 0.621880 0.167*
H16Ed 0.446164 0.751847 0.700085 0.167*
H16Fd 0.354611 0.750998 0.660742 0.167*
C17Ad 0.3723 (5) 0.5968 (7) 0.7073 (5) 0.117 (3)
H17Dd 0.375589 0.630055 0.747247 0.175*
H17Ed 0.397992 0.542333 0.715480 0.175*
H17Fd 0.310340 0.590659 0.694074 0.175*
  1. aOccupancy: 0.65, bOccupancy: 0.52(3), cOccupancy: 0.48(3), dOccupancy: 0.35.

Source of material

The title compound, (Z)-2-(tert-butyl)-5-((5-(tert-butyl)-2H-pyrrol-2-ylidene)(mesityl)methyl)-1H-pyrrole, was synthesized according to the literatured methodology [5, 6]. The synthesis includes two step of synthesis and seperation. Due to the tedious work-up procedure, we modified the synthetic procedure of the title compound to a one pot reaction. Firstly the 2,4,6-trimethylbenzaldehyde (296 mg, 2 mmol) was dissolved in anhydrous dichloromethane (60 mL) under nitrogen atmosphere. Then 2-tert-butylpyrrole (492 mg, 4 mmol) and trifluoroacetic acid (one drop) were added by syringe successively. The solution was stirred at room temperature for 5 h. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 495 mg, 2 mmol) in dichloromethane (10 mL) was added to the reaction mixture and stirred at room temperature continuously for about 1 h. The reaction progress was monitored by TLC. Once the starting material 2,4,6-trimethylbenzaldehyde disappeared totally and the target spot formed regularly, the reaction mixture was quenched by adding 100 mL distilled water. Then, a successive extraction, washing, and drying over anhydrous MgSO4 was done. The seperated organic phase was concentrated and removed in vacuum. The resulting cruded product was purified by column chromatography, yielding a yellow powder. Crystals were obtained by slow evaporation its solution in dichloromethane within several days.

Experimental details

The hydrogen atoms were placed in geometrically positions and refined using a riding model with d(C—H) = 0.93 Å(aromatic), 0.96 Å(–CH 3), 0.86 Å(–NH). U iso(H) = 1.2 U eq(C) for CH or U iso(H) = 1.5 U eq(C) for CH3 and NH groups [3]. One of the tertiary butyl, attached to the α position of pyrrole ring, is disordered. The disordered two parts were processed by rotating around the axis of C9—C14 with site occupation 0.65 and 0.35, respectively (not shown in the figure). In addition, the hydrogen atom attached to N1 was also treated as disordered atom due to the symmetric-plane. The H2A, part 2, was assigned to N2 with site occupation 0.52.

Comment

When we configure the dipyrrin metal complexes, the dipyrrin derivatives will be the important ligands [7], [8], [9]. Up to now, many metals have been involved in the dipyrrin related complexes, such as Zn, Fe, Sn, Cu, B etc. [7]. Among various dipyrrin complexes, the F–B dipyrrin complexes attracted the attention due to their strong fluorescence emission [10], [11], [12], [13], [14], [15]. With fine tuning the structure of dipyrrin F–B complexes, the emission wavelength can be significantly shifted according to the material requirement.

In the title crystal structure, the asymmetric unit contains on molecules. Both the bond lengths and the angles are in the expected ranges. The two pyrrole rings were connected by C5 and configured a plane with the RMSD estimated to be 0.021 Å. In fact, the two pyrrole rings are conjugated. The distance of C4—C5 and C5—C6 are 1.389 and 1.410 Å, respectively, which has the character of double and single bond. Together with the analysis of bond length of the two pyrrole rings, alternating single/double bond was observed in the plane (C1/C2/C3/C4/N1/C5/C6/C7/C8/C9/N2), supporting the regular aromaticity. In addition, the plane also was stabilized by the intramolecular hydrogen bond (N1—H1⃛N2) and (N2—H2A⃛N1). The H⃛O distance was estimated to be 2.124 and 2.135 Å. The N1⃛N2 contact was 2.715 Å, which is inside the interval of 3.0–4.0 Å, basing on a survey of over 100 structures. The N—H⃛N angles (125.5 and 124.4°) are also in agreement with the literature [16, 17]. According to the structural analysis, only one hydrogen atom is attached to the nitrogen atom. However, the electron density around N2 indicates that part of the hydrogen atom bonded to N2. This kind of hydrogen disorder can also be found in other dipyrrin derivatives [6, 18, 19]. Once the two nitrogen atoms were protonated both, the plane involving two pyrrole rings will be significant twisted [8, 20]. The distance between C5—C18 is determined to be 1.501 Å, and can be characterized as a single bond. At the same time, the highly hindered methyl (C24/C26) groups at the mesity moiety (C18/C19/C20/C21/C22/C23) twist away with respect to the two pyrrole configured plane with the torsion angle of 78.2°. In solution or solid state, the rotating restriction of meso-substituted benzene ring contributes to the emission of dipyrrin complexes in a certain degree.

The intermolecular interactions that stabilized the crystal lattice are C—H⃛π interactions. The hydrogen atoms (H13C, H25C, H15F etc.) located directly above the pyrrole or benzene ring stabilizes the adjacent molecules in layers [21]. Also, the hydrogen bonds and C—H⃛π interactions constructs the crystal network. It is important for us to understand the emission behavior of dipyrrin dyes in aggregate states. Both the emission enhancement or quenching of dye depends on various intermolecular interaction [22, 23].


Corresponding author: Yingfan Liu, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Henan Provincial Key Lab of Surface and Interface Science, Zhengzhou 450002, P. R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies. CrysAlisPRO; Agilent Technologies: Santa Clara, CA, USA, 2013.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341; https://doi.org/10.1107/S0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

5. Maeda, H., Hashimoto, T., Fujii, R., Hasegawa, M. Dipyrrin ZnII complexes with functional aryl groups: formation, characterization, and structures in the solid state. J. Nanosci. Nanotechnol. 2009, 9, 240–248; https://doi.org/10.1166/jnn.2009.j011.Search in Google Scholar PubMed

6. Scharf, A. B., Betley, T. A. Electronic perturbations of iron dipyrrinato complexes via ligand β-halogenation and meso-fluoroarylation. Inorg. Chem. 2011, 50, 6837–6845; https://doi.org/10.1021/ic2009539.Search in Google Scholar PubMed

7. King, E. R., Hennessy, E. T., Betley, T. A. Catalytic C–H bond amination from high-spin iron imido complexes. J. Am. Chem. Soc. 2011, 133, 4917–4923; https://doi.org/10.1021/ja110066j.Search in Google Scholar PubMed

8. Yamaura, M., Takizawa, H., Nabeshima, T. Zwitterionic N2O2-type protonated dipyrrin bearing a phosphate anionic moiety as a pH-responsive fluorescence indicator. Org. Lett. 2015, 17, 3114–3117.10.1021/acs.orglett.5b01414Search in Google Scholar PubMed

9. Miao, W., Sheng, W., Yu, C., Hao, E., Liu, W., Wei, Y., Jiao, L. Direct synthesis of dipyrrolyldipyrrins from SNAr reaction on 1,9-dihalodipyrrins with pyrroles and their NIR fluorescence “Turn–On” response to Zn2+. Org. Lett. 2017, 19, 6244–6247; https://doi.org/10.1021/acs.orglett.7b03206.Search in Google Scholar PubMed

10. Li, X., Han, Y., Sun, S., Shan, D., Ma, X., He, G., Mergu, N., Park, J.-S., Kim, C.-H., Son, Y.-A. A diaminomaleonitrile-appended BODIPY chemosensor for the selective detection of Cu2+ via oxidative cyclization and imaging in SiHa cells and zebrafish. Spectrochim. Acta, Part A 2020, 233, 118179; https://doi.org/10.1016/j.saa.2020.118179.Search in Google Scholar PubMed

11. Li, X., Guo, X., Chen, Y., Cui, T., Xing, L. Double 3-ethyl-2,4-dimethylpyrrole configured fluorescent dye with fluorine-boron as the bridge. J. Fluoresc. 2021, 31, 1797–1803; https://doi.org/10.1007/s10895-021-02819-9.Search in Google Scholar PubMed

12. Tamgho, I. S., Hasheminasab, A., Engle, J. T., Nemykin, V. N., Ziegler, C. J. A new highly fluorescent and symmetric pyrrole—BF2 chromophore: BOPHY. J. Am. Chem. Soc. 2014, 136, 5623–5626; https://doi.org/10.1021/ja502477a.Search in Google Scholar

13. Li, X., Tian, G., Shao, D., Xu, Y., Wang, Y., Ji, G., Ryu, J., Son, Y.-A. A BODIPY based emission signal turn-on probe toward multiple heavy metals. Mol. Cryst. Liq. Cryst. 2020, 706, 38–46; https://doi.org/10.1080/15421406.2020.1743436.Search in Google Scholar

14. Li, X., Liao, M., Sun, J., Heo, G., Son, Y.-A. Thiophene modulated BODIPY dye as a light harvester. Mol. Cryst. Liq. Cryst. 2019, 679, 127–136; https://doi.org/10.1080/15421406.2019.1597557.Search in Google Scholar

15. Wang, L., Tamgho, I.-S., Crandall, L. A., Rack, J. J., Ziegler, C. J. Ultrafast dynamics of a new class of hiughly fluorescent boron difluoride dyes. Phys. Chem. Chem. Phys. 2015, 17, 2349–2351; https://doi.org/10.1039/c4cp04737k.Search in Google Scholar

16. Desiraju, G. R. The C—H⃛O hydrogen bond in crystals: what is it? Acc. Chem. Res. 1991, 24, 290–296; https://doi.org/10.1021/ar00010a002.Search in Google Scholar

17. Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 48–76; https://doi.org/10.1002/1521-3773(20020104)41:1<48::aid-anie48>3.0.co;2-u.10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USearch in Google Scholar

18. Zhang, F., Fluck, A., Baudron, S. A., Hosseini, M. W. Synthesis, crystal structure and optical properties of a series of dipyrrins bearing peripheral coordinating groups and their BODIPYs and Zn(II) complexes. Inorg. Chim. Acta. 2019, 494, 216–222; https://doi.org/10.1016/j.ica.2019.05.027.Search in Google Scholar

19. Ballmann, G., Grams, S., Elsen, H., Harder, S. Dipyrromethene and β-diketiminate zinc hydride complexes: resemblances and differences. Organometallics 2019, 38, 2824–2833; https://doi.org/10.1021/acs.organomet.9b00334.Search in Google Scholar

20. Toyoda, R., Sakamoto, R., Fukui, N., Matsuoka, R., Tsuchiya, M., Nishihara, H. A single-stranded coordination copolymer affords heterostructure observation and photoluminescence intensification. Sci. Adv. 2019, 5, eaau0637; https://doi.org/10.1126/sciadv.aau0637.Search in Google Scholar

21. Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R., Lavery, A. J. X–H⃛π (phenyl) interactions theoretical and crystallographic observations. J. Chem. Soc., Faraday Trans. 1997, 93, 3429–3436; https://doi.org/10.1039/a700669a.Search in Google Scholar

22. Li, X., Ji, G., Son, Y.-A. Tunable emission of hydrazine-containing bipyrrole fluorineeboron complexes by linear extension. Dyes Pigm. 2016, 124, 232–240; https://doi.org/10.1016/j.dyepig.2015.09.022.Search in Google Scholar

23. Li, X., Son, Y.-A. Efficient luminescence from easily prepared fluorine-boron core complexes based on benzothiazole and benzoxazole. Dyes Pigm. 2014, 107, 182–187; https://doi.org/10.1016/j.dyepig.2014.04.001.Search in Google Scholar

Received: 2022-06-16
Accepted: 2022-07-20
Published Online: 2022-08-15
Published in Print: 2022-10-26

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 3-(1-(2-((5-methylthiophen-2-yl)methylene)hydrazinyl)ethylidene)chroman-2,4-dione, C17H14N2O3S
  4. Crystal structure of chlorido-(η 6-toluene)(5,5′-dimethyl-2,2′-bipyridine-κ2 N,N′)ruthenium(II) hexafluoridophosphate(V) ─ acetone (1/1) C22H26ClN2ORuPF6
  5. Crystal structure of 4-(((2-(3-(1-(3-(3-cyanophenyl)-6-oxopyridazin-1(6H)-yl)ethyl)phenyl) pyrimidin-5-yl)oxy)methyl)-1-methylpiperidin-1-ium chloride monohydrate, C30H33N6O2Cl
  6. The crystal structure of 2-chloro-N-((2-chlorophenyl)carbamoyl)nicotinamide, C13H9Cl2N3O2
  7. Crystal structure of 9-(t-butyl)-3,11-dihydro-6H-pyrazolo [1,5-a]pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-6-one hemihydrate, C30H32N10O3
  8. Crystal structure of di-μ2-hydroxido-tetrakis(6-methylpyridine-2-carboxylato-k2 N,O) diiron(III) trihydrate C28H32Fe2N4O13
  9. Crystal structure of catena-poly[qua-(μ2-2-aminoisophthalat-κ3 O,O′:O′′)(1,10-phenanthroline-κ2 N,N′)manganese(II)] C20H15MnN3O5
  10. Crystal structure of poly[(bis(isothiocyano)-bis(μ 2-(E)-N′-(pyridin-4-ylmethylene)isonicotinohydrazide))iron(II) – methanol – 1,4-dioxane (1/2/2), C36H44FeN10O8S2
  11. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl)propylidene)-4-hydroxybenzohydrazide, C16H15ClN2O3
  12. Crystal structure of bis(μ2-benzoato-k2O:O′)-bis(μ2-benzoato-k3O,O′:O′)dinitrato-k2O,O′-bis(phenanthroline-k2 N,N′)dierbium(III), C52H36Er2N6O14
  13. Crystal structure of 4-ethyl-2-{[(4-nitrophenyl)methyl]sulfanyl}-6-oxo-1,6-dihydropyrimidine-5-carbonitrile, C14H12N4O3S
  14. Synthesis and crystal structure of 1-((3R,10S,13R,17S)-10,13-dimethyl-3- (phenylamino)hexadecahydro-1H-cyclopenta[α] phenanthren-17-yl)ethan-1-one, C27H39NO
  15. Crystal structre of 1,4-bis(bromomethyl)-2,3,5,6-tetramethylbenzene, C12H16Br2
  16. Crystal structure of 2-(adamantan-1-yl)-5-(3,5-dinitrophenyl)-1,3,4-oxadiazole, C18H18N4O5
  17. Crystal structure of (E)-N′-benzylidene-4-nitrobenzohydrazide – methanol (1/1), C15H15N3O4
  18. The crystal structure of 3-(2-bromophenyl)-1,5-di-p-tolylpentane-1,5-dione, C25H23BrO2
  19. Crystal structure of catena-poly[(μ 2-4,4′-bipyridine-κ2 N:N′)-bis(4-bromobenzoato-κ1 O)zinc(II)], C24H16Br2N2O4Zn
  20. Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)zinc(II), C20H14N6ZnS4
  21. Crystal structure of pentacarbonyl-(μ2-propane-1,3-dithiolato-κ4 S:S,S′:S′)-(diphenyl(o-tolyl)phosphine-κ1 P)diiron (Fe-Fe), C27H23Fe2O5PS2
  22. The crystal structure of the cocrystal 4-hydroxy-3,5-dimethoxybenzoic acid–pyrazine-2-carboxamide(1/1), C14H15N3O6
  23. The crystal structure of dichlorido-bis((RS)-2-(4-chlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)hexanenitrile-κ1 N)zinc(II), C30H34Cl4N8Zn
  24. Crystal structure of the cocrystal 2,4,6-triamino-1,3,5-triazine – 1H-isoindole-1,3(2H)-dione – methanol (1/1/1), C12H15N7O3
  25. The crystal structure of methyl 4-((3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl) benzoate, C23H28O3
  26. Crystal structure of (poly[µ2-(1H-pyrazol-1-yl)methyl]-1H-benzotriazole-κ 2 N:N)-(nitrato-κ 2 O:O′) silver(I), C9H8AgN7O3
  27. Crystal structure of tetraaqua-bis[4-(1H-1,2,4-triazol-1-yl)benzoato-k1 N]cadmium(II), C18H20CdN6O8
  28. The crystal structure of diaqua-bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)nickel(II) dihydrate, C14H16N6O8Ni
  29. Crystal structure of poly[μ2-aqua-aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)-(μ2-4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ2 O:O′)-(μ4-4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ5 O,O′:O″:O′″:O′″)dicobalt(II)] – water – dimethylformamide (1/1/1) C44H43N11O12Co2
  30. Crystal structure of N-((Z)-amino(((E)-amino(phenylamino)methylene) amino)methylene)benzenaminium chloride – benzo[f]isoquinolino[3,4-b][1,8]naphthyridine – tetrahydrofurane (1/2/2), C60H54ClN11O2
  31. The crystal structure of Chrysosplenol D, C18H16O8
  32. Crystal structure of poly[deca aqua-bis(μ 4-2-(triazol-1-yl)-benzene-1,3,5-tricarboxylato)- bis(μ 5-2-(triazol-1-yl)-benzene-1,3-dicarboxylato-5-carboxyl acid) pentamanganese(II)] dihydrate, C44H42Mn5N12O36
  33. Synthesis and crystal structure of (E)-1-(4-(((E)-3-(tert-butyl)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C20H24N2O2
  34. The crystal structure of 4,4′-dichloro-6,6′-dimethoxy-2,2′,3,3′,5,5′- hexanitroazobenzene, C14H6N8O14Cl2
  35. Crystal structure of N 2,N 4-dimesitylpentane-2,4-diamine, C23H34N2
  36. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ 6O6)potassium(2-methylphenylamino)ethyl-2-methylphenylamide ammoniate (1/3.5), [K(18-crown-6)](o-CH3C6H4)NH(CH2)2N(o-CH3C6H4) 3.5 NH3, C28H53.5KN5.5O6
  37. The crystal structure of N′,N″,2-tris((E)-5-chloro-2-hydroxybenzylidene)hydrazine-1-carbohydrazonhydrazide hydrochloride – methanol (1/3), C25H30Cl4N6O6
  38. Crystal structure of (E)-7-bromo-2-(3,5-dimethoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H17BrO3
  39. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)-4-hydroxybenzohydrazide, C15H13ClN2O3
  40. {2-(((2-aminoethyl)imino)methyl)-6-bromophenolato-κ3 N,N′,O}iron(III) nitrate, C18H20Br2FeN5O5
  41. Crystal structure of 2-(tert-pentyl)anthracene-9,10-dione, C19H18O2
  42. Crystal structure of 5,5′-(1,4-phenylene)bis(1H-imidazol-3-ium) bis(2-(2-(carboxymethyl)phenyl)acetate), C32H30N4O8
  43. Crystal structure of N 2,N 6-bis(2-(((E)-naphthalen-1-ylmethylene)amino)phenyl)pyridine-2,6-dicarboxamide, C41H29N5O2
  44. The crystal structure of 3-amino-1,2,4-triazolium 2,4,5-trinitroimidazolate, C5H5O6N9
  45. Hydrogen bonded dimers in the crystal structure of 2-chloro-N-(phenylcarbamoyl)nicotinamide, C26H20Cl2N6O4
  46. The crystal structure of 4,4′-bipyridine-5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one-water(1/2/2), C40H32N2O12
  47. Crystal structure of N,N'-bis(4-fluoro-salicylaldehyde)-3,6-dioxa-1,8-diaminooctane, C20H22F2N2O4
  48. Crystal structure of 3-(1,3-dinitropropan-2-yl)-4H-chromen-4-one, C12H10N2O6
  49. The crystal structure of (4-(2-bromoethoxy)-phenyl)(phenyl)methanone, C15H13BrO2
  50. Crystal structure of (E)-7-bromo-2-(4-methoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C18H15BrO2
  51. Crystal structure of dichlorido-tetrakis((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)cadmium(II), C60H68O4N12Cl10Cd
  52. Crystal structure of diaqua-diphenanthroline-κ2 N,N′-bis(μ2-2-carboxy-3,4,5,6-tetrafluorobenzoato-κ2 O:O′)-bis(μ2-tetrafluorophthalato-κ3 O,O′:O′)didysprosium(III) – phenanthroline (1/2), C80H38Dy2F16N8O18
  53. Crystal structure of bis(μ2-2-oxido-2-phenylacetato-κ3 O,O′:O′)-bis(N-oxido-benzamide-κ2 O,O′)-bis(propan-2-olato-κ1 O)dititanium(IV), C36H38N2O12Ti2
  54. Crystal structure of poly[diaqua-(μ2-1H-benzo[d][1,2,3]triazole-5-carboxylato-κ2 O:O′)(μ2-oxalato-κ4O,O:O″,O′″)europium(III)] monohydrate, C9H10N3O9Eu
  55. Crystal structure of bis((N-methyl-2-oxyethyl)amine)-bis(μ 2-N,N,N-tris(2-oxoethyl)amine)-bis(isopropoxy)-bis(μ 3-oxo)tetratitanium(IV)– isopropanol (1/2), C34H76N4O16Ti4
  56. Synthesis and crystal structure of ethyl 4-((4-iodobenzyl)amino)benzoate, C16H16INO2
  57. Crystal structure of (Z)-2-(tert-butyl)-5-((5-(tert- butyl)-2H-pyrrol-2-ylidene)(mesityl)methyl)-1H-pyrrole, C26H34N2
  58. Crystal structure of dimethylammonium poly[μ4-1,1′-(1,4- phenylenebis(methylene))bis(1H-pyrazole-3,5-dicarboxylato-κ6 N,O:O′:N′,O″:O‴) manganese(II)], C22H26MnN6O8
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0307/html
Scroll to top button