Startseite Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ 6O6)potassium(2-methylphenylamino)ethyl-2-methylphenylamide ammoniate (1/3.5), [K(18-crown-6)](o-CH3C6H4)NH(CH2)2N(o-CH3C6H4) 3.5 NH3, C28H53.5KN5.5O6
Artikel Open Access

Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ 6O6)potassium(2-methylphenylamino)ethyl-2-methylphenylamide ammoniate (1/3.5), [K(18-crown-6)](o-CH3C6H4)NH(CH2)2N(o-CH3C6H4) 3.5 NH3, C28H53.5KN5.5O6

  • Christoph Wallach ORCID logo , Wilhelm Klein ORCID logo und Thomas F. Fässler ORCID logo EMAIL logo
Veröffentlicht/Copyright: 8. August 2022

Abstract

C28H53.5KN5.5O6, monoclinic, Pc (no. 7), a = 18.7986(12) Å, b = 8.3431(6) Å, c = 22.4638(16) Å, β = 100.554(5)°, V = 3463.6(4) Å3, Z = 4, Rgt (F) = 0.0712, wRref (F 2) = 0.2226, T = 150 K.

CCDC no.: 2180406

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow sphere
Size: 0.20 × 0.20 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.20 mm−1
Diffractometer, scan mode: STOE StadiVari, ω
θ max, completeness: 26.0°, >99%
N(hkl) measured , N(hkl) unique, R int: 40,821, 13,144, 0.075
Criterion for I obs, N(hkl) gt: I obs > 2 σ(I obs), 10,077
N(param) refined: 745
Programs: X-Area [1], SHELX [2, 3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.0781 (4) 0.6477 (9) 0.1624 (3) 0.0474 (16)
H1A 0.1301 0.6748 0.1668 0.057*
H1B 0.0609 0.6101 0.1205 0.057*
C2 0.0683 (4) 0.5156 (8) 0.2066 (3) 0.0459 (15)
H2A 0.0171 0.4807 0.1995 0.055*
H2B 0.0986 0.4222 0.2005 0.055*
C3 0.0432 (3) 0.9153 (8) 0.1380 (3) 0.0401 (14)
C4 0.0050 (4) 1.0635 (9) 0.1467 (3) 0.0472 (16)
C5 0.0092 (4) 1.1952 (9) 0.1102 (3) 0.0480 (16)
H5 −0.0162 1.2898 0.1170 0.058*
C6 0.0492 (4) 1.1947 (9) 0.0638 (3) 0.0520 (17)
H6 0.0504 1.2866 0.0390 0.062*
C7 0.0872 (4) 1.0581 (10) 0.0546 (3) 0.0501 (17)
H7 0.1157 1.0571 0.0238 0.060*
C8 0.0843 (3) 0.9210 (8) 0.0900 (3) 0.0444 (15)
H8 0.1105 0.8285 0.0821 0.053*
C9 −0.0393 (5) 1.0667 (10) 0.1955 (4) 0.059 (2)
H9A −0.0544 1.1770 0.2016 0.089*
H9B −0.0104 1.0259 0.2333 0.089*
H9C −0.0823 0.9992 0.1837 0.089*
C10 0.0796 (4) 0.4788 (8) 0.3179 (3) 0.0448 (15)
C11 0.0742 (3) 0.5489 (9) 0.3738 (3) 0.0461 (15)
C12 0.0652 (4) 0.4477 (10) 0.4214 (4) 0.0545 (18)
H12 0.0612 0.4939 0.4593 0.065*
C13 0.0620 (4) 0.2828 (10) 0.4155 (4) 0.0588 (19)
H13 0.0550 0.2175 0.4486 0.071*
C14 0.0691 (4) 0.2147 (9) 0.3614 (4) 0.0560 (19)
H14 0.0686 0.1013 0.3574 0.067*
C15 0.0769 (4) 0.3102 (9) 0.3124 (4) 0.0497 (16)
H15 0.0805 0.2617 0.2748 0.060*
C16 0.0758 (5) 0.7287 (9) 0.3804 (4) 0.0569 (19)
H16A 0.1226 0.7695 0.3738 0.085*
H16B 0.0689 0.7576 0.4212 0.085*
H16C 0.0370 0.7758 0.3504 0.085*
C17 0.5542 (4) 0.2993 (8) 0.0840 (3) 0.0426 (14)
H17A 0.5564 0.2878 0.0405 0.051*
H17B 0.6007 0.3453 0.1049 0.051*
C18 0.4921 (4) 0.4121 (8) 0.0912 (3) 0.0458 (15)
H18A 0.4927 0.4336 0.1347 0.055*
H18B 0.4972 0.5154 0.0707 0.055*
C19 0.5945 (3) 0.0323 (8) 0.1040 (3) 0.0423 (14)
C20 0.5888 (4) −0.1279 (8) 0.1273 (3) 0.0426 (14)
C21 0.6411 (5) −0.2421 (10) 0.1236 (4) 0.0558 (18)
H21 0.6354 −0.3466 0.1387 0.067*
C22 0.7006 (5) −0.2100 (11) 0.0989 (5) 0.068 (2)
H22 0.7359 −0.2906 0.0973 0.081*
C23 0.7090 (4) −0.0556 (12) 0.0758 (5) 0.068 (2)
H23 0.7509 −0.0311 0.0595 0.082*
C24 0.6566 (4) 0.0612 (10) 0.0765 (4) 0.0539 (18)
H24 0.6620 0.1625 0.0585 0.065*
C25 0.5251 (4) −0.1642 (9) 0.1570 (4) 0.0557 (18)
H25A 0.4801 −0.1441 0.1283 0.084*
H25B 0.5269 −0.0954 0.1926 0.084*
H25C 0.5268 −0.2769 0.1696 0.084*
C26 0.3578 (4) 0.4100 (8) 0.0596 (3) 0.0410 (14)
C27 0.2938 (4) 0.3161 (8) 0.0449 (3) 0.0425 (14)
C28 0.2276 (4) 0.3958 (10) 0.0356 (3) 0.0515 (17)
H28 0.1845 0.3347 0.0246 0.062*
C29 0.2218 (4) 0.5615 (9) 0.0416 (4) 0.0539 (18)
H29 0.1757 0.6118 0.0346 0.065*
C30 0.2843 (4) 0.6516 (9) 0.0581 (4) 0.0525 (17)
H30 0.2811 0.7644 0.0629 0.063*
C31 0.3521 (4) 0.5769 (8) 0.0674 (3) 0.0450 (15)
H31 0.3947 0.6392 0.0792 0.054*
C32 0.2985 (4) 0.1345 (9) 0.0411 (3) 0.0501 (16)
H32A 0.3217 0.1050 0.0070 0.075*
H32B 0.2497 0.0887 0.0351 0.075*
H32C 0.3271 0.0928 0.0788 0.075*
C33 0.2344 (4) 0.2584 (12) 0.1868 (4) 0.060 (2)
H33A 0.1838 0.2565 0.1646 0.072*
H33B 0.2657 0.2120 0.1602 0.072*
C34 0.2570 (4) 0.4279 (11) 0.2027 (4) 0.059 (2)
H34A 0.2480 0.4954 0.1658 0.071*
H34B 0.2283 0.4716 0.2317 0.071*
C35 0.3594 (5) 0.5892 (10) 0.2397 (4) 0.060 (2)
H35A 0.3288 0.6499 0.2633 0.072*
H35B 0.3582 0.6453 0.2006 0.072*
C36 0.4361 (5) 0.5814 (9) 0.2742 (4) 0.0563 (18)
H36A 0.4660 0.5151 0.2518 0.068*
H36B 0.4572 0.6904 0.2789 0.068*
C37 0.5049 (4) 0.5150 (9) 0.3708 (4) 0.0546 (18)
H37A 0.5220 0.6268 0.3775 0.065*
H37B 0.5402 0.4553 0.3516 0.065*
C38 0.4989 (4) 0.4388 (9) 0.4301 (4) 0.0508 (17)
H38A 0.5441 0.4557 0.4598 0.061*
H38B 0.4584 0.4873 0.4464 0.061*
C39 0.4814 (4) 0.1898 (9) 0.4748 (3) 0.0510 (17)
H39A 0.4416 0.2362 0.4926 0.061*
H39B 0.5271 0.2031 0.5043 0.061*
C40 0.4673 (4) 0.0143 (10) 0.4618 (4) 0.0546 (18)
H40A 0.5047 −0.0300 0.4405 0.065*
H40B 0.4693 −0.0453 0.5002 0.065*
C41 0.3819 (5) −0.1664 (9) 0.4057 (4) 0.0571 (19)
H41A 0.3897 −0.2383 0.4413 0.069*
H41B 0.4146 −0.2002 0.3781 0.069*
C42 0.3044 (5) −0.1756 (10) 0.3736 (4) 0.061 (2)
H42A 0.2906 −0.2888 0.3650 0.073*
H42B 0.2723 −0.1303 0.3997 0.073*
C43 0.2227 (4) −0.0832 (12) 0.2878 (4) 0.063 (2)
H43A 0.1928 −0.0269 0.3132 0.076*
H43B 0.2041 −0.1938 0.2806 0.076*
C44 0.2183 (4) 0.0027 (12) 0.2285 (4) 0.067 (2)
H44A 0.2504 −0.0499 0.2040 0.080*
H44B 0.1681 −0.0009 0.2055 0.080*
C45 0.7084 (5) 0.0657 (11) 0.2523 (4) 0.061 (2)
H45A 0.6899 0.0554 0.2083 0.073*
H45B 0.6746 0.0095 0.2742 0.073*
C46 0.7824 (5) −0.0085 (11) 0.2680 (4) 0.062 (2)
H46A 0.7814 −0.1194 0.2521 0.074*
H46B 0.8176 0.0543 0.2498 0.074*
C47 0.8760 (5) −0.0672 (12) 0.3506 (5) 0.070 (2)
H47A 0.9105 0.0055 0.3357 0.084*
H47B 0.8809 −0.1755 0.3338 0.084*
C48 0.8910 (5) −0.0722 (10) 0.4192 (4) 0.064 (2)
H48A 0.8533 −0.1362 0.4337 0.077*
H48B 0.9385 −0.1231 0.4339 0.077*
C49 0.9022 (4) 0.0896 (10) 0.5060 (3) 0.0551 (19)
H49A 0.9449 0.0235 0.5228 0.066*
H49B 0.8594 0.0441 0.5199 0.066*
C50 0.9141 (4) 0.2597 (12) 0.5280 (4) 0.060 (2)
H50A 0.9260 0.2618 0.5728 0.072*
H50B 0.9550 0.3078 0.5120 0.072*
C51 0.8576 (4) 0.5139 (10) 0.5244 (4) 0.0577 (19)
H51A 0.8951 0.5638 0.5047 0.069*
H51B 0.8732 0.5220 0.5688 0.069*
C52 0.7858 (5) 0.5990 (10) 0.5049 (4) 0.062 (2)
H52A 0.7473 0.5434 0.5215 0.075*
H52B 0.7892 0.7108 0.5199 0.075*
C53 0.7044 (5) 0.6816 (11) 0.4166 (5) 0.072 (3)
H53A 0.7094 0.7955 0.4291 0.087*
H53B 0.6636 0.6345 0.4328 0.087*
C54 0.6902 (5) 0.6696 (10) 0.3485 (5) 0.069 (2)
H54A 0.6489 0.7390 0.3311 0.083*
H54B 0.7333 0.7055 0.3326 0.083*
C55 0.6578 (5) 0.4885 (12) 0.2670 (4) 0.066 (2)
H55A 0.6986 0.5284 0.2489 0.080*
H55B 0.6141 0.5514 0.2501 0.080*
C56 0.6450 (4) 0.3131 (12) 0.2523 (4) 0.062 (2)
H56A 0.6091 0.2690 0.2752 0.075*
H56B 0.6259 0.2993 0.2085 0.075*
K1 0.36436 (7) 0.21464 (19) 0.32711 (7) 0.0464 (4)
K2 0.78875 (8) 0.29735 (19) 0.38429 (7) 0.0499 (4)
N1 0.0376 (3) 0.7889 (7) 0.1739 (3) 0.0422 (12)
N2 0.0892 (3) 0.5747 (8) 0.2686 (3) 0.0451 (13)
H2 0.071 (4) 0.661 (11) 0.272 (4) 0.05 (2)*
N3 0.5433 (3) 0.1426 (7) 0.1096 (3) 0.0416 (12)
N4 0.4243 (3) 0.3337 (7) 0.0639 (3) 0.0435 (13)
H4 0.426 (5) 0.235 (12) 0.075 (4) 0.07 (3)*
N5 0.2640 (4) 0.3465 (12) 0.3948 (4) 0.080 (2)
H5A 0.2710 0.4542 0.3986 0.121*
H5B 0.2709 0.3007 0.4321 0.121*
H5C 0.2181 0.3267 0.3751 0.121*
N6 0.4340 (4) 0.1480 (9) 0.2097 (3) 0.0641 (18)
H6A 0.4018 0.2277 0.1967 0.096*
H6B 0.4112 0.0516 0.2042 0.096*
H6C 0.4706 0.1508 0.1882 0.096*
N7 0.5315 (6) −0.0043 (12) 0.3261 (5) 0.098 (3)
H7A 0.5092 0.0464 0.2918 0.148*
H7B 0.5217 0.0484 0.3591 0.148*
H7C 0.5150 −0.1068 0.3261 0.148*
N8 0.8899 (4) 0.4399 (14) 0.3199 (5) 0.101 (3)
H8A 0.8675 0.5182 0.2951 0.151*
H8B 0.9074 0.3638 0.2973 0.151*
H8C 0.9271 0.4833 0.3467 0.151*
N9 0.6663 (4) 0.1920 (12) 0.4337 (4) 0.088 (3)
H9D 0.6513 0.0948 0.4178 0.131*
H9E 0.6297 0.2643 0.4244 0.131*
H9F 0.6790 0.1836 0.4747 0.131*
N10 0.8830 (4) 0.6654 (9) 0.2025 (4) 0.0683 (19)
H10A 0.8554 0.7468 0.2128 0.102*
H10B 0.8740 0.6531 0.1615 0.102*
H10C 0.9307 0.6889 0.2152 0.102*
N11 0.7914 (5) 0.3377 (13) 0.1559 (4) 0.094 (3)
H11A 0.8277 0.4113 0.1630 0.141*
H11B 0.8084 0.2452 0.1423 0.141*
H11C 0.7750 0.3181 0.1909 0.141*
O1 0.2405 (3) 0.1667 (7) 0.2405 (2) 0.0561 (13)
O2 0.3322 (3) 0.4312 (6) 0.2289 (2) 0.0510 (12)
O3 0.4354 (2) 0.5128 (6) 0.3322 (2) 0.0459 (11)
O4 0.4864 (2) 0.2712 (6) 0.4198 (2) 0.0447 (11)
O5 0.3968 (3) −0.0033 (6) 0.4245 (2) 0.0469 (11)
O6 0.2963 (3) −0.0873 (6) 0.3183 (2) 0.0516 (12)
O7 0.7129 (3) 0.2303 (7) 0.2689 (2) 0.0539 (12)
O8 0.8028 (3) −0.0090 (7) 0.3326 (2) 0.0550 (12)
O9 0.8910 (3) 0.0873 (6) 0.4417 (2) 0.0494 (11)
O10 0.8481 (3) 0.3504 (6) 0.5069 (2) 0.0507 (12)
O11 0.7696 (3) 0.5970 (6) 0.4397 (3) 0.0574 (13)
O12 0.6743 (3) 0.5073 (6) 0.3320 (2) 0.0544 (12)

Source of material

The title compound was obtained as an unintended side product from a synthesis aiming at functionalized Zintl cluster compounds [5]. All reactions were performed under the exclusion of oxygen and moisture using standard Schlenk line and glove box techniques. Glyoxal (Merck), BBr3 (Sigma Aldrich) and 2-methylanilin (Sigma Aldrich) were used without further purification. 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6; Merck) was purified by sublimation. Bromo-1,3,2-diazaborolidine (DAB o−tol–Br) was prepared according to a published procedure [5, 6]. K4Ge9 was prepared by fusing stoichiometric amounts of the elements in stainless-steel tubes at 650 °C. Liquid ammonia was dried over sodium metal for 2 h prior to condensing it onto the reaction mixture. K4Ge9 (80 mg, 98.7 μmol, 1 equiv.), DAB o−tol–Br (32.5 mg, 98.7 μmol, 1 equiv.), and 18-crown-6 (47.0 mg, 177.7 μmol, 1.8 equiv.) were weighed into a Schlenk tube and liquid ammonia (2 mL) was condensed onto the reactants, causing the formation of a red solution. Yellow spherical crystals of the title compound were isolated from the reaction mixture after 9 months. An exact yield could not be determined due to the experimental setup.

Experimental details

A single crystal was selected under a microscope equipped with a light source using a cooling table [7]. Subsequently, the crystal was transferred under liquid nitrogen to the diffractometer (STOE StadiVari) equipped with a PILATUS 300 K detector (DECTRIS) and a Mo Kα radiation source (λ = 0.71073 Å). For the data collection the crystal was cooled in a 150 K cold stream of dry nitrogen. The single crystal structure was determined by direct methods using the program SHELXS-97 [2]. Structure refinements were performed by full-matrix least-squares calculations against F 2 (SHELXL-2014) [3]. Non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms at N2 and N4 were located from the difference Fourier map and were refined with independent positional and isotropic displacement parameters. No similar strong residual electron densities could be detected at N1 and N3. Some hydrogen atoms of the ammonia molecules around N6, N7, N10, and N11 were localized from the difference Fourier map, the remaining ones were positioned in direction to close neighboured atoms where hydrogen bonds are probable. The methyl and ammonia H atoms were finally refined using a riding model with U iso set to 1.5 U eq(C) and U eq(N), respectively, all other H atoms with U iso set to 1.2 U eq(C) [3].

Comment

The title compound (1) consists of an ion pair of the cationic coordination complex [K(18-crown-6)]+ and the [(o-CH3C6H4)NH(CH2)2N(o-CH3C6H4)] anion, and crystallizes including 3.5 molecules of ammonia per formula unit. 1 crystallizes in the monoclinic space group Pc with four formula units per unit cell, the asymmetric unit is formed by two formula units. The anion is the amide of N1,N2-di(o-CH3C6H4)ethylene-1,2-diamine, which serves a reactant in the synthesis of the bromo-1,3,2-diazaborolidine DAB o−tol–Br [6]. Most probably, trace amounts of N1,N2-di(o-CH3C6H4)ethylene-1,2-diamine remained in the synthesized precursor DAB o−tol–Br, which were transferred into the reaction mixture in liquid ammonia by weighing in the precursor. Even though an exact formation mechanism for the generation of the amide cannot be determined, the generation of amides in liquid ammonia or ethylenediamine is an oftentimes described process [8], [9], [10], [11].

The two crystallographically independent anions (1a1b) are quite similarly shaped. The interatomic distances of the central ethanediamine groups [C1–C2 1.517(11) Å, C17–C18 1.531(10) Å, C1–N1 1.451(9) Å, C17–N3 1.458(8) Å, C2–N2 1.462(10) Å, C18–N4 1.464(9) Å] clearly indicate single bonds. Also, the torsion angles of the two amine substituents around the C1–C2 and C17–C18 bonds of 55.6° and 54.9°, respectively, are in the expected range for this. In contrast, the N–C bonds to the aryl groups of 1.343(9) Å (N1–C3), 1.403(9) Å (N2–C10), 1.354(9) Å (N3–C19), and 1.390(9) Å (N4–C26) are significantly shorter, also shorter than those in related compounds such as o-methylaniline (N–C 1.447 Å) [12], suggesting a partial double bond character, which is even slightly stronger expressed for the negatively charged N atom. This is supported by the torsion angles of the substituents of the N–C(aryl) bond, which are nearly planar around the amide N atom at 179.3° (1a) and 179.4° (1b), and deviate only slightly from planarity even with a protonated N atom [156.9° (1a) and 166.5° (1a)]. The relative inclination of the planes of the aromatic rings is 33.7° (1a) and 41.3° (1b).

The potassium cations are coordinated in equatorial positions by oxygen atoms of [18]crown-6 molecules and are located in the molecular plane. The mean interatomic distances K–O, C–O, and C–C were determined to 2.814, 1.431, and 1.507 Å, respectively. Additionally, ammonia molecules coordinate the potassium cations in axial positions. For K2, two NH3 molecules are observed at distances of 2.852(9) Å (N8) and 2.871(9) Å (N9), forming an almost linear H3N–K–NH3 unit with an angle of 168.6(3)°. K1 is coordinated by an NH3 molecule at 2.851(8) Å, while on the opposite side of the molecule there are NH3 molecules at a greater distance from the K+ ion, which form hydrogen bonds to oxygen atoms of the crown ether molecule [13]. The longish anions are arranged with their major extension roughly along the crystallographic c (1a) or a (1b) axes and stacked in the b direction, respectively. The cation complexes and the solvent molecules are located in the channels parallel to b formed in this way.


Corresponding author: Thomas F. Fässler, Technische Universität München, Fakultät für Chemie, Anorganische Chemie mit Schwerpunkt Neue Materialien, Lichtenbergstr. 4, 85747 Garching, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: 245845833

Acknowledgments

CW thanks the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, project number 245845833) within the International Research Training Group IRTG 2022 (ATUMS) for funding. Furthermore, CW thanks the Studienstiftung des Deutschen Volkes for granting a PhD scholarship.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, project number 245845833) within the International Research Training Group IRTG 2022 (ATUMS).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Stoe & Cie GmbH. X–Area Version 1.76; Stoe & Cie GmbH: Darmstadt, Germany, 2017.Suche in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

3. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Brandenburg, K., Putz, H. Diamond. Visual Crystal Structure Information System. Version 3.2k; Crystal Impact: Bonn, Germany, 2014.Suche in Google Scholar

5. Wallach, C., Geitner, F. S., Fässler, T. F. FLP-type nitrile activation and cyclic ether ring-opening by halo-borane nonagermanide-cluster Lewis acid-base pairs. Chem. Sci. 2021, 12, 6969–6976; https://doi.org/10.1039/d1sc00811k.Suche in Google Scholar PubMed PubMed Central

6. Segawa, Y., Suzuki, Y., Yamashita, M., Nozaki, K. Chemistry of boryllithium: synthesis, structure, and reactivity. J. Am. Chem. Soc. 2008, 130, 16069–16079; https://doi.org/10.1021/ja8057919.Suche in Google Scholar PubMed

7. Kottke, T., Stalke, D. Crystal handling at low temperatures. J. Appl. Crystallogr. 1993, 26, 615–619; https://doi.org/10.1107/s0021889893002018.Suche in Google Scholar

8. Goicoechea, J. M., Sevov, S. C. Organozinc derivatives of deltahedral zintl ions: synthesis and characterization of closo-[E9Zn(C6H5)]3− (E = Si, Ge, Sn, Pb). Organometallics 2006, 25, 4530–4536; https://doi.org/10.1021/om060481g.Suche in Google Scholar

9. Zhou, B., Denning, M. S., Jones, C., Goicoechea, J. M. Reductive cleavage of Zn–C bonds by group 14 zintl anions: synthesis and characterisation of [E9ZnR]3− (E = Ge, Sn, Pb; R = Mes, iPr). Dalton Trans. 2009, 2009, 1571–1578; https://doi.org/10.1039/b815122a.Suche in Google Scholar PubMed

10. Ugrinov, A., Sevov, S. C. Derivatization of deltahedral zintl ions by nucleophilic addition: [Ph–Ge9–SbPh2]2− and [Ph2Sb–Ge9–Ge9–SbPh2]4−. J. Am. Chem. Soc. 2003, 125, 14059–14064.10.1021/ja037007bSuche in Google Scholar PubMed

11. Wallach, C., Mayer, K., Henneberger, T., Klein, W., Fässler, T. F. Intermediates and products of the reaction of Zn(II) organyls with tetrel element Zintl ions: cluster extension versus complexation. Dalton Trans. 2020, 49, 6191–6198; https://doi.org/10.1039/d0dt01096k.Suche in Google Scholar PubMed

12. Nishikiori, Sh., Iwamoto, T. Crystal structure of the Hofmann-dma type clathrate. J. Struct. Chem. 1999, 40, 726–749; https://doi.org/10.1007/bf02903449.Suche in Google Scholar

13. Henneberger, T., Klein, W., Fässler, T. F. Crystal structure of (1, 4, 7, 10, 13, 16-hexaoxacyclooctadecane-κ6O6)1, 2, 3, 4, 5- pentamethyl-cyclopenta-2, 4-dien-1-yl(potassium, rubidium)-ammonia(1/2), [K0.3Rb0.7(18-crown-6)]Cp*·2NH3, C22H45K0.3N2O6Rb0.7. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 1241–1243; https://doi.org/10.1515/ncrs-2019-0368.Suche in Google Scholar

Received: 2022-06-01
Accepted: 2022-06-20
Published Online: 2022-08-08
Published in Print: 2022-10-26

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 3-(1-(2-((5-methylthiophen-2-yl)methylene)hydrazinyl)ethylidene)chroman-2,4-dione, C17H14N2O3S
  4. Crystal structure of chlorido-(η 6-toluene)(5,5′-dimethyl-2,2′-bipyridine-κ2 N,N′)ruthenium(II) hexafluoridophosphate(V) ─ acetone (1/1) C22H26ClN2ORuPF6
  5. Crystal structure of 4-(((2-(3-(1-(3-(3-cyanophenyl)-6-oxopyridazin-1(6H)-yl)ethyl)phenyl) pyrimidin-5-yl)oxy)methyl)-1-methylpiperidin-1-ium chloride monohydrate, C30H33N6O2Cl
  6. The crystal structure of 2-chloro-N-((2-chlorophenyl)carbamoyl)nicotinamide, C13H9Cl2N3O2
  7. Crystal structure of 9-(t-butyl)-3,11-dihydro-6H-pyrazolo [1,5-a]pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-6-one hemihydrate, C30H32N10O3
  8. Crystal structure of di-μ2-hydroxido-tetrakis(6-methylpyridine-2-carboxylato-k2 N,O) diiron(III) trihydrate C28H32Fe2N4O13
  9. Crystal structure of catena-poly[qua-(μ2-2-aminoisophthalat-κ3 O,O′:O′′)(1,10-phenanthroline-κ2 N,N′)manganese(II)] C20H15MnN3O5
  10. Crystal structure of poly[(bis(isothiocyano)-bis(μ 2-(E)-N′-(pyridin-4-ylmethylene)isonicotinohydrazide))iron(II) – methanol – 1,4-dioxane (1/2/2), C36H44FeN10O8S2
  11. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl)propylidene)-4-hydroxybenzohydrazide, C16H15ClN2O3
  12. Crystal structure of bis(μ2-benzoato-k2O:O′)-bis(μ2-benzoato-k3O,O′:O′)dinitrato-k2O,O′-bis(phenanthroline-k2 N,N′)dierbium(III), C52H36Er2N6O14
  13. Crystal structure of 4-ethyl-2-{[(4-nitrophenyl)methyl]sulfanyl}-6-oxo-1,6-dihydropyrimidine-5-carbonitrile, C14H12N4O3S
  14. Synthesis and crystal structure of 1-((3R,10S,13R,17S)-10,13-dimethyl-3- (phenylamino)hexadecahydro-1H-cyclopenta[α] phenanthren-17-yl)ethan-1-one, C27H39NO
  15. Crystal structre of 1,4-bis(bromomethyl)-2,3,5,6-tetramethylbenzene, C12H16Br2
  16. Crystal structure of 2-(adamantan-1-yl)-5-(3,5-dinitrophenyl)-1,3,4-oxadiazole, C18H18N4O5
  17. Crystal structure of (E)-N′-benzylidene-4-nitrobenzohydrazide – methanol (1/1), C15H15N3O4
  18. The crystal structure of 3-(2-bromophenyl)-1,5-di-p-tolylpentane-1,5-dione, C25H23BrO2
  19. Crystal structure of catena-poly[(μ 2-4,4′-bipyridine-κ2 N:N′)-bis(4-bromobenzoato-κ1 O)zinc(II)], C24H16Br2N2O4Zn
  20. Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)zinc(II), C20H14N6ZnS4
  21. Crystal structure of pentacarbonyl-(μ2-propane-1,3-dithiolato-κ4 S:S,S′:S′)-(diphenyl(o-tolyl)phosphine-κ1 P)diiron (Fe-Fe), C27H23Fe2O5PS2
  22. The crystal structure of the cocrystal 4-hydroxy-3,5-dimethoxybenzoic acid–pyrazine-2-carboxamide(1/1), C14H15N3O6
  23. The crystal structure of dichlorido-bis((RS)-2-(4-chlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)hexanenitrile-κ1 N)zinc(II), C30H34Cl4N8Zn
  24. Crystal structure of the cocrystal 2,4,6-triamino-1,3,5-triazine – 1H-isoindole-1,3(2H)-dione – methanol (1/1/1), C12H15N7O3
  25. The crystal structure of methyl 4-((3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl) benzoate, C23H28O3
  26. Crystal structure of (poly[µ2-(1H-pyrazol-1-yl)methyl]-1H-benzotriazole-κ 2 N:N)-(nitrato-κ 2 O:O′) silver(I), C9H8AgN7O3
  27. Crystal structure of tetraaqua-bis[4-(1H-1,2,4-triazol-1-yl)benzoato-k1 N]cadmium(II), C18H20CdN6O8
  28. The crystal structure of diaqua-bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)nickel(II) dihydrate, C14H16N6O8Ni
  29. Crystal structure of poly[μ2-aqua-aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)-(μ2-4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ2 O:O′)-(μ4-4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ5 O,O′:O″:O′″:O′″)dicobalt(II)] – water – dimethylformamide (1/1/1) C44H43N11O12Co2
  30. Crystal structure of N-((Z)-amino(((E)-amino(phenylamino)methylene) amino)methylene)benzenaminium chloride – benzo[f]isoquinolino[3,4-b][1,8]naphthyridine – tetrahydrofurane (1/2/2), C60H54ClN11O2
  31. The crystal structure of Chrysosplenol D, C18H16O8
  32. Crystal structure of poly[deca aqua-bis(μ 4-2-(triazol-1-yl)-benzene-1,3,5-tricarboxylato)- bis(μ 5-2-(triazol-1-yl)-benzene-1,3-dicarboxylato-5-carboxyl acid) pentamanganese(II)] dihydrate, C44H42Mn5N12O36
  33. Synthesis and crystal structure of (E)-1-(4-(((E)-3-(tert-butyl)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C20H24N2O2
  34. The crystal structure of 4,4′-dichloro-6,6′-dimethoxy-2,2′,3,3′,5,5′- hexanitroazobenzene, C14H6N8O14Cl2
  35. Crystal structure of N 2,N 4-dimesitylpentane-2,4-diamine, C23H34N2
  36. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ 6O6)potassium(2-methylphenylamino)ethyl-2-methylphenylamide ammoniate (1/3.5), [K(18-crown-6)](o-CH3C6H4)NH(CH2)2N(o-CH3C6H4) 3.5 NH3, C28H53.5KN5.5O6
  37. The crystal structure of N′,N″,2-tris((E)-5-chloro-2-hydroxybenzylidene)hydrazine-1-carbohydrazonhydrazide hydrochloride – methanol (1/3), C25H30Cl4N6O6
  38. Crystal structure of (E)-7-bromo-2-(3,5-dimethoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H17BrO3
  39. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)-4-hydroxybenzohydrazide, C15H13ClN2O3
  40. {2-(((2-aminoethyl)imino)methyl)-6-bromophenolato-κ3 N,N′,O}iron(III) nitrate, C18H20Br2FeN5O5
  41. Crystal structure of 2-(tert-pentyl)anthracene-9,10-dione, C19H18O2
  42. Crystal structure of 5,5′-(1,4-phenylene)bis(1H-imidazol-3-ium) bis(2-(2-(carboxymethyl)phenyl)acetate), C32H30N4O8
  43. Crystal structure of N 2,N 6-bis(2-(((E)-naphthalen-1-ylmethylene)amino)phenyl)pyridine-2,6-dicarboxamide, C41H29N5O2
  44. The crystal structure of 3-amino-1,2,4-triazolium 2,4,5-trinitroimidazolate, C5H5O6N9
  45. Hydrogen bonded dimers in the crystal structure of 2-chloro-N-(phenylcarbamoyl)nicotinamide, C26H20Cl2N6O4
  46. The crystal structure of 4,4′-bipyridine-5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one-water(1/2/2), C40H32N2O12
  47. Crystal structure of N,N'-bis(4-fluoro-salicylaldehyde)-3,6-dioxa-1,8-diaminooctane, C20H22F2N2O4
  48. Crystal structure of 3-(1,3-dinitropropan-2-yl)-4H-chromen-4-one, C12H10N2O6
  49. The crystal structure of (4-(2-bromoethoxy)-phenyl)(phenyl)methanone, C15H13BrO2
  50. Crystal structure of (E)-7-bromo-2-(4-methoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C18H15BrO2
  51. Crystal structure of dichlorido-tetrakis((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)cadmium(II), C60H68O4N12Cl10Cd
  52. Crystal structure of diaqua-diphenanthroline-κ2 N,N′-bis(μ2-2-carboxy-3,4,5,6-tetrafluorobenzoato-κ2 O:O′)-bis(μ2-tetrafluorophthalato-κ3 O,O′:O′)didysprosium(III) – phenanthroline (1/2), C80H38Dy2F16N8O18
  53. Crystal structure of bis(μ2-2-oxido-2-phenylacetato-κ3 O,O′:O′)-bis(N-oxido-benzamide-κ2 O,O′)-bis(propan-2-olato-κ1 O)dititanium(IV), C36H38N2O12Ti2
  54. Crystal structure of poly[diaqua-(μ2-1H-benzo[d][1,2,3]triazole-5-carboxylato-κ2 O:O′)(μ2-oxalato-κ4O,O:O″,O′″)europium(III)] monohydrate, C9H10N3O9Eu
  55. Crystal structure of bis((N-methyl-2-oxyethyl)amine)-bis(μ 2-N,N,N-tris(2-oxoethyl)amine)-bis(isopropoxy)-bis(μ 3-oxo)tetratitanium(IV)– isopropanol (1/2), C34H76N4O16Ti4
  56. Synthesis and crystal structure of ethyl 4-((4-iodobenzyl)amino)benzoate, C16H16INO2
  57. Crystal structure of (Z)-2-(tert-butyl)-5-((5-(tert- butyl)-2H-pyrrol-2-ylidene)(mesityl)methyl)-1H-pyrrole, C26H34N2
  58. Crystal structure of dimethylammonium poly[μ4-1,1′-(1,4- phenylenebis(methylene))bis(1H-pyrazole-3,5-dicarboxylato-κ6 N,O:O′:N′,O″:O‴) manganese(II)], C22H26MnN6O8
Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0275/html
Button zum nach oben scrollen