Startseite Naturwissenschaften Crystal structure of bis(DL-1-carboxy-2-(1H-indol-3-yl)ethan-1-aminium) oxalate — acetic acid (1/2)
Artikel Open Access

Crystal structure of bis(DL-1-carboxy-2-(1H-indol-3-yl)ethan-1-aminium) oxalate — acetic acid (1/2)

  • Amina Sayed und Ayesha Jacobs ORCID logo EMAIL logo
Veröffentlicht/Copyright: 23. April 2025

Abstract

C28H34N4O12, triclinic, P 1 (no. 2), a = 8.5022(17) Å, b = 9.790(2) Å, c = 10.736(2) Å, α = 113.52(3)°, β = 91.93(3)°, γ = 115.68(3)°, V = 715.1(3) Å3, Z = 2, R gt (F) = 0.0394, wR ref (F2) = 0.1025, T = 173(2) K.

CCDC no.: 1407908

The molecular structure is shown in the figure. Table 1 contains the crystallographic data.

Table 1:

Data collection and handling.

Crystal: Colourless plate
Size: 0.32 × 0.28 × 0.11 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.11 mm−1
Diffractometer, scan mode: Bruker Apex II, ϕ and ω scans
θmax, completeness: 28.4°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 6209, 3578, 0.019
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2,999
N(param)refined: 224
Programs: Bruker, 1 , 2 WinGX, 3 SHELX 4 , 5 , XSeed 6

The list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

1 Source of materials

DL-1-carboxy-2-(1H-indol-3-yl)ethan-1-amine, more commonly known as DL-tryptophan and oxalic acid were purchased from Sigma Aldrich. Acetic acid was obtained from Merck. DL -Tryptophan (0.148 mmol, 0.0302 g) and oxalic acid (0.143 mmol, 0.0129 g) were dissolved in 1 mL of acetic acid:water (1:1) with heating. The solution was allowed to cool to room temperature. Slow evaporation of the solution gave plate colourless crystals after 3 weeks.

2 Experimental details

The carboyxlic acid hydrogen atoms, indole hydrogen atom and the aminium hydrogen atoms were located in the difference electron density map and freely refined with isotropic temperature factors. The C–H atoms were geometrically constrained at 0.95 Å for aromatic, 0.98 Å for methyl H atoms and 0.99 Å for methylene H atoms. Uiso(H) = 1.2 for aromatic, methylene and tertiary H atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms.

3 Comment

Tryptophan is an α amino acid and can occur in the L- or D-enantiomeric forms. L-tryptophan is an essential amino acid which is acquired through the diet or supplementation. 7 D-tryptophan is produced by probiotic bacteria. 8 Amino acids are important biological molecules and thus have been a focus area for crystal engineering studies. 9 , 10 , 11 The crystal structure of DL -tryptophan revealed a zwitterion. 12 A multicomponent crystal of (S)-tryptophan, acetic acid and water also gave the zwitterionic form of tryptophan. 13 However the crystal structure of D-tryptophan with oxalic acid displayed the transfer of a proton from the oxalic acid to the amine nitrogen of tryptophan, forming a salt. 14 We have previously reported salts of tryptophan with p-toluenesulphonic and camphorsulphonic acids. 15

In the crystal structure of bis( DL -1-carboxy-2-(1H-indol-3-yl)ethan-1-aminium) oxalate acetic acid solvate more commonly named bis( DL -tryptophanium) oxalate acetic acid solvate, a proton is transferred from the oxalic acid to the amine nitrogen of tryptophan and the acetic acid remains neutral. The oxalate anion is situated on an inversion centre. The aminium moiety of the tryptophanium cation forms NH⋯O hydrogen bonds to two acetic acid molecules (N5⋯O20 a  = 2.9719(14) Å; a = x, y, z; N5⋯O20 b  = 2.827(2) Å; b = −x, −y + 1, −z + 1) and an oxalate anion (N5⋯O17 b  = 2.8404(16) Å). The indole nitrogen forms an NH⋯O hydrogen bond with the carbonyl oxygen of another tryptophanium cation (N9⋯O2 c  = 3.0209(16) Å; c = x, y + 1, z). The carboxylic acid group of the tryptophanium cation forms an OH⋯O hydrogen bond with the oxalate anion (O1⋯O17 d  = 2.5582(13) Å; d = x, y − 1, z). The acetic acid is also hydrogen bonded to the oxalate anion (O19⋯O16 e  = 2.5621(14) Å; e = x − 1, y − 1, z).

Two tryptophanium cations and two oxalate anions form R44(20) hydrogen bonded rings. Two tryptophanium cations and two acetic acid molecules form R42(8) rings. Tryptophanium cations and oxalate anions form C22(10) chains, resulting in hydrophilic and hydrophobic layers parallel to [100].


Corresponding author: Ayesha Jacobs, Chemistry Department, Faculty of Applied Sciences, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa, E-mail:
Amina Sayed: Current address: Holistic Drug Discovery and Development Centre (H3D), University of Cape Town, Cape Town 7701, South Africa.
  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Bruker Apex2, Saint–PLus and Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Suche in Google Scholar

2. Bruker Xprep; Bruker AXS Inc.: Madison, Wisconsin, USA, 2004.Suche in Google Scholar

3. Farrugia, L. J. WinGX and Ortep for Windows: An Update. J. Appl. Cryst. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

4. Sheldrick, G. M. A Short History of Shelx. Acta Cryst. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

5. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Cryst. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

6. Barbour, L. J. X–Seed–A Software Tool for Supramolecular Crystallography. Supramol. Chem. 2001, 1, 189–191; https://doi.org/10.1016/s1472-7862(02)00030-8.Suche in Google Scholar

7. Wu, G. Amino Acids: Metabolism, Functions, and Nutrition. Amino Acids 2009, 37, 1–17; https://doi.org/10.1007/s00726-009-0269-0.Suche in Google Scholar PubMed

8. Kepert, I.; Fonseca, J.; Müller, C.; Milger, K.; Hochwind, K.; Kostric, M.; Fedoseeva, M.; Ohnmacht, C.; Dehmel, S.; Nathan, P.; Bartel, S.; Eickelberg, O.; Schloter, M.; Hartmann, A.; Schmitt-Kopplin, P.; Krauss-Etschmann, S. D-Tryptophan from Probiotic Bacteria Influences the Gut Microbiome and Allergic Airway Disease. J. Allergy Clin. Immunol. 2017, 139, 1525–1535; https://doi.org/10.1016/j.jaci.2016.09.003.Suche in Google Scholar PubMed

9. Tilborg, A.; Norberg, B.; Wouters, J. Pharmaceutical Salts and Cocrystals Involving Amino Acids: A Brief Structural Overview of the State-Of-Art. Eur. J. Med. Chem. 2014, 74, 411–426; https://doi.org/10.1016/j.ejmech.2013.11.045.Suche in Google Scholar PubMed

10. Görbitz, C. H. Crystal Structures of Amino Acids: From Bond Lengths in glycine to Metal Complexes and High-Pressure Polymorphs. Crystallogr. Rev. 2015, 21, 160–212; https://doi.org/10.1080/0889311x.2014.964229.Suche in Google Scholar

11. Nugrahani, I.; Jessica, M. A. Amino Acids as the Potential Co-former for Co-crystal Development: A Review. Molecules 2021, 26, 3279; https://doi.org/10.3390/molecules26113279.Suche in Google Scholar PubMed PubMed Central

12. Hübschle, C. B.; Messerschmidt, M.; Luger, P. Crystal Structure of DL–Tryptophan at 173K. Cryst. Res. Technol. 2004, 39, 274–278; https://doi.org/10.1002/crat.200310182.Suche in Google Scholar

13. Li, J.; Liang, Z.-P.; Tai, X.-S. Crystal Structure of (S)-2-amino-3-(1H-indol-3-yl)propanoic acidate-acetic acid-water (1:1:1), C11H12N2O2·CH3COOH·H2O. Z. Kristallogr. N. Cryst. Struct. 2009, 224, 153–154; https://doi.org/10.1524/ncrs.2009.0068.Suche in Google Scholar

14. Bakke, O.; Mostad, M.; Grynfarb, M.; Bartfai, T.; Enzell, C. R. The Structure and Conformation of Tryptophan in the Crystal of the Pure Racemic Compound and the Hydrogen Oxalate. Acta Chem. Scand. 1980, 34, 559; https://doi.org/10.3891/acta.chem.scand.34b-0559.Suche in Google Scholar

15. Sayed, A.; Jacobs, A. Salts of Tryptophan with p-Toluenesulphonic Acid and Camphorsulphonic Acids. J. Chem. Cryst. 2016, 46, 57–66; https://doi.org/10.1007/s10870-015-0627-6.Suche in Google Scholar

Received: 2025-02-24
Accepted: 2025-04-02
Published Online: 2025-04-23
Published in Print: 2025-06-26

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bi(1,3,4-oxadiazole), C16H4N10O14
  4. Crystal structure of catena-poly[(μ3-4,4′-oxydibenzoato- κ5 O,O: O,O:O)-bis(2,4,6-tri(3-pyridine)-1,3,5-triazine-κ1 N)cadmium(II)], C50H32CdN12O5
  5. The crystal structure of 1,4-diazepane-1,4-diium potassium trinitrate, C5H14KN5O9
  6. The crystal structure of benzyl 2,2,5,5-tetramethylthiazolidine-4-carboxylate, C15H21NO2S
  7. Crystal structure of 2-hydroxyethyl-triphenylphosphonium tetracyanidoborate, C24H20BN4OP
  8. The crystal structure of 1-methyl-3-(N-methylnitrous amide–N-methylene) imidazolidine-2,4,5-trione
  9. Crystal structure of N-((3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-(2,2,2-trifluoroacetyl)-1H-pyrazol-5-yl)carbamoyl)-2,6-difluorobenzamide, C20H7Cl2F8N5O3S
  10. Crystal structure of 5-(2,2-difluoropropyl)-5-methylbenzo[4,5]imidazo[2,1-a] isoquinolin-6(5H)-one, C20H18F2N2O
  11. The crystal structure of N′,N″-[1,2-bis(4-chlorophenyl)ethane-1,2-diylidene]bis(furan-2- carbohydrazide), C24H16Cl2N4O4
  12. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromoantimony(III), [C25H21BrP]+[SbBr4]
  13. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromidoindium(III), [C25H21BrP]+[InBr4]
  14. The crystal structure of 4-carboxy-2-oxobutan-1-aminium chloride, C5H10ClNO3
  15. Crystal structure of (4-(4-chlorophenyl)-1H-pyrrole-3-carbonyl)ferrocene, C21H16ClFeNO
  16. The crystal structure of dichlorido(η6-p-cymene)(triphenylarsine)ruthenium(II), C28H29AsCl2Ru
  17. Crystal structure of (Z)-2-hydroxy-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H16N2O2
  18. The crystal structure of 10-(1-bromoethyl)-14-(bromomethyl)dibenzo[a, c]acridine, C24H17NBr2
  19. Synthesis and crystal structure of 6-methoxy-7-[(4-methoxyphenyl)methoxy]-2H-1-benzopyran-2-one, C18H16O5
  20. Synthesis and crystal structure of ethyl 4-((4-trifluoromethylbenzyl)amino)benzo, C17H16F3NO2
  21. The crystal structure of (Z)-2-(tert-butyl)-6-(7-(tert-butyl)-5-methylbenzo[d][1,3]oxathiol-2-ylidene)-4-methylcyclohexa-2,4-dien-1-one, C23H28O2S
  22. The crystal structure of (R)-2-aminobutanamide hydrochloride, C4H11ClN2O
  23. Crystal structure of bromido[hydridotris(3-tert-butyl-5-isopropylpyrazolyl)borato-κ3 N,N′,N″]copper(II), C30H52BBrCuN6
  24. Crystal structure of chlorido{hydridotris[3-mesityl-5-methyl-1H-pyrazol-1-yl-κN3]borato}-copper(II) dichloromethane monosolvate
  25. Crystal structure of 4-[3,5-bis(propan-2-yl)-1H-pyrazol-4-yl]pyridine, C14H19N3
  26. Crystal structure of ((4-(4-bromophenyl)-1H-pyrrol-3-yl)methyl)ferrocene, C21H16BrFeNO
  27. Crystal structure of [(4-chlorobenzyl)triphenylphosphonium] dichloridocopper(I), {[C25H21ClP]+[CuCl2]}n
  28. The crystal structure of {Cu(2,9-diisopropyl-4,7-diphenyl-1,10-phenanthroline)[4,5-bis(diphenylphosphino)-9,9-dimethylxanthene]}+ PF6·1.5(EtOAC)
  29. Crystal structure of 3,5-bis(t-butyl)-1H-pyrazol-4-amine, C11H21N3
  30. Crystal structure of [(2,4-dichlorobenzyl)triphenylphosphonium] trichloridocopper(II), [C25H20Cl2P]+[CuCl3]
  31. The crystal structure of dipotassium sulfide, K2S
  32. Crystal structure of (4-(4-methoxyphenyl)-1H-pyrrole-3-carbonyl)ferrocene, C22H19FeNO2
  33. Crystal structure of (E)-6-(4-methylpiperazin-1-yl)-2-(4-(trifluoromethyl)benzylidene)-3, 4-dihydronaphthalen-1(2H)-one, C23H23F3N2O
  34. Crystal structure of (E)-6-morpholino-2-(4-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C22H20F3NO2
  35. Crystal structure of Ce9Ir37Ge25
  36. The crystal structure of ethyl 6-(2-nitrophenyl)imidazo[2,1-b]thiazole-3-carboxylate, C14H11N3O4S
  37. Crystal structure of (4-(4-isopropylphenyl)-1H-pyrrol-3-yl)(ferrocenyl)methanone, C24H23FeNO
  38. Crystal structure of bis(methylammonium) tetrathiotungstate(VI), (CH3NH3)2[WS4]
  39. Crystal structure of 6,11-dihydro-12H-benzo[e]indeno[1,2-b]oxepin-12-one, C17H12O2
  40. Crystal structure of 3-[(4-phenylpiperidin-1-yl)methyl]-5-(thiophen-2-yl)-2,3-dihydro-1,3,4- oxadiazole-2-thione, C18H19N3OS2
  41. Crystal structure of N-isopropyl-1,8-naphthalimide C15H13NO2
  42. TiNiSi-type EuPdBi
  43. Crystal structure of 1-(p-tolylphenyl)-4-(2-thienoyl)-3-methyl-1H-pyrazol-5-ol, C16H14N2O2S
  44. The crystal structure of 3-(3-carboxypropyl)-2-nitro-1H-pyrrole 1-oxide, C7H9N3O5
  45. The crystal structure of tetraaqua-bis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k2O:N)-tetrakis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k1N)trizinc(II) hexahydrate C36H52N18O32Zn3
  46. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 4-hydroxy-3,5-dimethoxybenzoate monohydrate, C25H30FN3O9
  47. Crystal structure of bis(DL-1-carboxy-2-(1H-indol-3-yl)ethan-1-aminium) oxalate — acetic acid (1/2)
  48. Crystal structure of methyl (E)-4-((4-methylphenyl)sulfonamido)but-2-enoate, C12H15NO4S
  49. The crystal structure of actarit, C10H11NO3
  50. The crystal structure of bicyclol, C19H18O9
  51. The crystal structure of topiroxostat, C13H8N6
  52. Crystal structure of 2,2-dichloro-N-methyl-N-(4-p-tolylthiazol-2-yl)acetamide, C13H12Cl2N2OS
  53. Crystal structure of 4-(trifluoromethyl)-7-coumarinyl trifluoromethanesulfonate C11H4F6O5S
  54. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6)-((Z)-N,N′-bis(2-(dimethylamino)phenyl)carbamimidato-κ1N)potassium(I)
  55. Crystal structure of (Z)-2-(5-((4-(dimethylamino)naphthalen-1-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid, C18H16N2O3S2
  56. Crystal structure of (4-fluorobenzyl)triphenylphosphonium bromide, C25H21BrFP
  57. The crystal structure of dichlorido-[6-(pyridin-2-yl)phenanthridine-κ2N, N′]zinc(II)-chloroform (1/1), C19H13N2ZnCl5
  58. Crystal structure of (E)-(3-(2,4-dichlorophenyl)acryloyl)ferrocene, C19H14Cl2FeO
  59. The crystal structure of (E)-7-chloro-1-cyclopropyl-6-fluoro-3-((2-hydroxybenzylidene)amino)quinolin-4(1H)-one, C19H14ClFN2O2
  60. Crystal structure of 2-bromo-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13BrFNO4S2
  61. Crystal structure of 2-chloro-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13ClFNO4S2
  62. Crystal structure of 5-(2,2-difluoropropyl)-5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline-3-carbonitrile, C20H15F2N3O
Heruntergeladen am 19.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0091/html?lang=de
Button zum nach oben scrollen