Startseite Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6)-((Z)-N,N′-bis(2-(dimethylamino)phenyl)carbamimidato-κ1N)potassium(I)
Artikel Open Access

Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6)-((Z)-N,N′-bis(2-(dimethylamino)phenyl)carbamimidato-κ1N)potassium(I)

  • Dabeen Hong und Kyounghoon Lee ORCID logo EMAIL logo
Veröffentlicht/Copyright: 24. April 2025

Abstract

C29H45KN4O7, P21/c (no. 14), a = 9.0016(2) Å, b = 23.5942(7) Å, c = 14.9186(4)Å, β = 102.509(1), V = 3093.28(14) Å3, Rgt = 0.049, wRref = 1270, T = 100K.

CCDC no.: 2442650

The molecular structure is shown in the figure. Table 1 contains the crystallographic data. The list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.34 × 0.18 × 0.13 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.22 mm−1
Diffractometer, scan mode: Bruker D8, φ and ω scans
θmax, completeness: 27.5°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 66162, 7112, 0.072
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 6,137
N(param)refined: 382
Programs: Bruker 1 , SHELX 2 , 3 , Olex2 4 , Mercury 5

1 Source of material

1,3-bis(2-(dimethylamino)phenyl)urea (20.8 mg, 0.070 mmol) was treated with KC8 (9.5 mg, 0.070 mmol) and 18-crown-6 (18.5 mg, 0.070 mmol) in THF. The mixture was stirred overnight at room temperature, filtered through a pad of Celite, and evaporated to dryness under vacuum. It was recrystallized from the solution in THF by the vapor diffusion of pentane.

2 Experimental details

The structure was solved using the intrinsic phasing method SHELXT and refined using least square method SHELXL. The positional disorder of oxygen atom was modeled by refining over two positions each atom while setting the sum of the site occupancy factor 1. Hydrogen atoms on carbons were idealized using riding models, while hydrogen atoms on nitrogen were located from difference Fourier map inspection.

3 Comment

Urea compounds have been extensively used for chemical, pharmaceutical, and agrochemical industries due to their remarkable properties such as intra and intermolecular hydrogen bondings. 6 , 7 , 8 , 9 Aromatic-substituted urea compounds are also interesting classes of chemicals because of the extended π conjugations and flexibility. There is one title complex in the asymmetric unit.

A single proton was deprotonated from 1,3-bis(2-(dimethylamino)phenyl)urea to form a coordinated imidate. C–O bond distance of 1.257(2) Å is slightly elongated than the C–O bond distance of 1.23 Å in diphenylurea. 10 The C1–N1 bond distance of 1.315(2) Å is slightly shorter than the C–N bond in diphenylurea, while the C1–N2 bond distance of 1.416(2) Å is slightly elongated. 10 The asymmetric environment also twisted the O–C–N angles of 114.12(15) and 129.27(17)°. The urea moieties and one aromatic ring were placed in the same plane, while the other aromatic ring is twisted with a torsion angle of 48.61(19)°. Intramolecular hydrogen bonding was found between the deprotonated nitrogen N1 and H13–C13. The donor-acceptor distance of 2.895(2) Å and donor-hydrogen-acceptor angle of 122.82(11)° indicated a weak hydrogen bonding interaction.


Corresponding author: Kyounghoon Lee, Department of Chemical Education and Research Institute of Natural Science, Gyeongsang National University, Gyeongnam 52828, Republic of Korea, E-mail:

Acknowledgments

This work was supported by the Research Resurgence under the Glocal University 30 Project at Gyeongsang National University in 2024.

References

1. Bruker. APEX5, SAINT, and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.Suche in Google Scholar

2. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8. https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

5. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53, 226–235. https://doi.org/10.1107/s1600576719014092.Suche in Google Scholar PubMed PubMed Central

6. Connon, S. J. Asymmetric Catalysis with Bifunctional Cinchona Alkaloid-Based Urea and Thiourea Organocatalysts. Chem. Commun. 2008, 22, 2499–2510. https://doi.org/10.1039/b719249e.Suche in Google Scholar PubMed

7. Connon, S. J. Organocatalysis Mediated by (Thio)urea Derivatives. Chem. Eur. J. 2006, 12, 5418–5427. https://doi.org/10.1002/chem.200501076.Suche in Google Scholar PubMed

8. Jagtap, A. D.; Kondekar, N. B.; Sadani, A. A.; Chern, J.-W. Ureas: Applications in Drug Design. Curr. Med. Chem. 2017, 24, 622–651. https://doi.org/10.2174/0929867323666161129124915.Suche in Google Scholar PubMed

9. Roussel, C.; Roman, M.; Andreoli, F.; del Rio, A.; Faure, R.; Vanthuyne, N. Non-racemic Atropisomeric (Thio)ureas as Neutral Enantioselective Anion Receptors for Amino-acid Derivatives: Origin of Smaller Kass with Thiourea than Urea Derivatives. Chirality 2006, 18, 762. https://doi.org/10.1002/chir.20320.Suche in Google Scholar PubMed

10. Deshapande, S. V.; Meredith, C. C.; Pasternak, R. A. Crystallographic Data on Disubstituted Symmetric Ureas. Acta Crystallogr. 1968, B24, 1396–1397. https://doi.org/10.1107/s0567740868004371.Suche in Google Scholar

Received: 2025-03-03
Accepted: 2025-04-10
Published Online: 2025-04-24
Published in Print: 2025-06-26

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bi(1,3,4-oxadiazole), C16H4N10O14
  4. Crystal structure of catena-poly[(μ3-4,4′-oxydibenzoato- κ5 O,O: O,O:O)-bis(2,4,6-tri(3-pyridine)-1,3,5-triazine-κ1 N)cadmium(II)], C50H32CdN12O5
  5. The crystal structure of 1,4-diazepane-1,4-diium potassium trinitrate, C5H14KN5O9
  6. The crystal structure of benzyl 2,2,5,5-tetramethylthiazolidine-4-carboxylate, C15H21NO2S
  7. Crystal structure of 2-hydroxyethyl-triphenylphosphonium tetracyanidoborate, C24H20BN4OP
  8. The crystal structure of 1-methyl-3-(N-methylnitrous amide–N-methylene) imidazolidine-2,4,5-trione
  9. Crystal structure of N-((3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-(2,2,2-trifluoroacetyl)-1H-pyrazol-5-yl)carbamoyl)-2,6-difluorobenzamide, C20H7Cl2F8N5O3S
  10. Crystal structure of 5-(2,2-difluoropropyl)-5-methylbenzo[4,5]imidazo[2,1-a] isoquinolin-6(5H)-one, C20H18F2N2O
  11. The crystal structure of N′,N″-[1,2-bis(4-chlorophenyl)ethane-1,2-diylidene]bis(furan-2- carbohydrazide), C24H16Cl2N4O4
  12. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromoantimony(III), [C25H21BrP]+[SbBr4]
  13. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromidoindium(III), [C25H21BrP]+[InBr4]
  14. The crystal structure of 4-carboxy-2-oxobutan-1-aminium chloride, C5H10ClNO3
  15. Crystal structure of (4-(4-chlorophenyl)-1H-pyrrole-3-carbonyl)ferrocene, C21H16ClFeNO
  16. The crystal structure of dichlorido(η6-p-cymene)(triphenylarsine)ruthenium(II), C28H29AsCl2Ru
  17. Crystal structure of (Z)-2-hydroxy-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H16N2O2
  18. The crystal structure of 10-(1-bromoethyl)-14-(bromomethyl)dibenzo[a, c]acridine, C24H17NBr2
  19. Synthesis and crystal structure of 6-methoxy-7-[(4-methoxyphenyl)methoxy]-2H-1-benzopyran-2-one, C18H16O5
  20. Synthesis and crystal structure of ethyl 4-((4-trifluoromethylbenzyl)amino)benzo, C17H16F3NO2
  21. The crystal structure of (Z)-2-(tert-butyl)-6-(7-(tert-butyl)-5-methylbenzo[d][1,3]oxathiol-2-ylidene)-4-methylcyclohexa-2,4-dien-1-one, C23H28O2S
  22. The crystal structure of (R)-2-aminobutanamide hydrochloride, C4H11ClN2O
  23. Crystal structure of bromido[hydridotris(3-tert-butyl-5-isopropylpyrazolyl)borato-κ3 N,N′,N″]copper(II), C30H52BBrCuN6
  24. Crystal structure of chlorido{hydridotris[3-mesityl-5-methyl-1H-pyrazol-1-yl-κN3]borato}-copper(II) dichloromethane monosolvate
  25. Crystal structure of 4-[3,5-bis(propan-2-yl)-1H-pyrazol-4-yl]pyridine, C14H19N3
  26. Crystal structure of ((4-(4-bromophenyl)-1H-pyrrol-3-yl)methyl)ferrocene, C21H16BrFeNO
  27. Crystal structure of [(4-chlorobenzyl)triphenylphosphonium] dichloridocopper(I), {[C25H21ClP]+[CuCl2]}n
  28. The crystal structure of {Cu(2,9-diisopropyl-4,7-diphenyl-1,10-phenanthroline)[4,5-bis(diphenylphosphino)-9,9-dimethylxanthene]}+ PF6·1.5(EtOAC)
  29. Crystal structure of 3,5-bis(t-butyl)-1H-pyrazol-4-amine, C11H21N3
  30. Crystal structure of [(2,4-dichlorobenzyl)triphenylphosphonium] trichloridocopper(II), [C25H20Cl2P]+[CuCl3]
  31. The crystal structure of dipotassium sulfide, K2S
  32. Crystal structure of (4-(4-methoxyphenyl)-1H-pyrrole-3-carbonyl)ferrocene, C22H19FeNO2
  33. Crystal structure of (E)-6-(4-methylpiperazin-1-yl)-2-(4-(trifluoromethyl)benzylidene)-3, 4-dihydronaphthalen-1(2H)-one, C23H23F3N2O
  34. Crystal structure of (E)-6-morpholino-2-(4-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C22H20F3NO2
  35. Crystal structure of Ce9Ir37Ge25
  36. The crystal structure of ethyl 6-(2-nitrophenyl)imidazo[2,1-b]thiazole-3-carboxylate, C14H11N3O4S
  37. Crystal structure of (4-(4-isopropylphenyl)-1H-pyrrol-3-yl)(ferrocenyl)methanone, C24H23FeNO
  38. Crystal structure of bis(methylammonium) tetrathiotungstate(VI), (CH3NH3)2[WS4]
  39. Crystal structure of 6,11-dihydro-12H-benzo[e]indeno[1,2-b]oxepin-12-one, C17H12O2
  40. Crystal structure of 3-[(4-phenylpiperidin-1-yl)methyl]-5-(thiophen-2-yl)-2,3-dihydro-1,3,4- oxadiazole-2-thione, C18H19N3OS2
  41. Crystal structure of N-isopropyl-1,8-naphthalimide C15H13NO2
  42. TiNiSi-type EuPdBi
  43. Crystal structure of 1-(p-tolylphenyl)-4-(2-thienoyl)-3-methyl-1H-pyrazol-5-ol, C16H14N2O2S
  44. The crystal structure of 3-(3-carboxypropyl)-2-nitro-1H-pyrrole 1-oxide, C7H9N3O5
  45. The crystal structure of tetraaqua-bis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k2O:N)-tetrakis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k1N)trizinc(II) hexahydrate C36H52N18O32Zn3
  46. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 4-hydroxy-3,5-dimethoxybenzoate monohydrate, C25H30FN3O9
  47. Crystal structure of bis(DL-1-carboxy-2-(1H-indol-3-yl)ethan-1-aminium) oxalate — acetic acid (1/2)
  48. Crystal structure of methyl (E)-4-((4-methylphenyl)sulfonamido)but-2-enoate, C12H15NO4S
  49. The crystal structure of actarit, C10H11NO3
  50. The crystal structure of bicyclol, C19H18O9
  51. The crystal structure of topiroxostat, C13H8N6
  52. Crystal structure of 2,2-dichloro-N-methyl-N-(4-p-tolylthiazol-2-yl)acetamide, C13H12Cl2N2OS
  53. Crystal structure of 4-(trifluoromethyl)-7-coumarinyl trifluoromethanesulfonate C11H4F6O5S
  54. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6)-((Z)-N,N′-bis(2-(dimethylamino)phenyl)carbamimidato-κ1N)potassium(I)
  55. Crystal structure of (Z)-2-(5-((4-(dimethylamino)naphthalen-1-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid, C18H16N2O3S2
  56. Crystal structure of (4-fluorobenzyl)triphenylphosphonium bromide, C25H21BrFP
  57. The crystal structure of dichlorido-[6-(pyridin-2-yl)phenanthridine-κ2N, N′]zinc(II)-chloroform (1/1), C19H13N2ZnCl5
  58. Crystal structure of (E)-(3-(2,4-dichlorophenyl)acryloyl)ferrocene, C19H14Cl2FeO
  59. The crystal structure of (E)-7-chloro-1-cyclopropyl-6-fluoro-3-((2-hydroxybenzylidene)amino)quinolin-4(1H)-one, C19H14ClFN2O2
  60. Crystal structure of 2-bromo-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13BrFNO4S2
  61. Crystal structure of 2-chloro-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13ClFNO4S2
  62. Crystal structure of 5-(2,2-difluoropropyl)-5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline-3-carbonitrile, C20H15F2N3O
Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0111/html
Button zum nach oben scrollen