Startseite The crystal structure of dipotassium sulfide, K2S
Artikel Open Access

The crystal structure of dipotassium sulfide, K2S

  • Günther Thiele ORCID logo EMAIL logo und Islam Ramadan ORCID logo
Veröffentlicht/Copyright: 14. März 2025

Abstract

K2S, cubic, F m 3 m (no. 225), a = 7.3642(5) Å, V = 399.37(8) Å3, Z = 4, Rint = 0.0348, Rgt(F) = 0.0137 wRref(F2) = 0.0379, GooF = 1.037, T = 100(1) K.

CCDC no.: 2425875

1 Source of material

Single crystals of K2S were obtained by means of solvothermal treatment of a phase of the nominal composition “K4CeS3”. Elemental cerium (99 %, OnyxMet) was used as received, K2S and K2S2 were synthesized in liquid ammonia according to the literature procedure, 4 with slight modifications: potassium (98 %, Acros Organics, 20.0 g, 511.5 mmol, 2 eq.) was dissolved in approx. 300 ml of liquid ammonia first, then sulfur (99 %, abcr GmbH, 8.2 g, 255.7 mmol, 1 eq.) was slowly added under vigorous stirring. The product was dried in vacuo at 573 K for 48 h. All manipulations were performed under strict exclusion of air and moisture using standard Schlenk techniques or an argon filled glovebox.

Table 1:

Data collection and handling.

Crystal: Clear yellow plate
Size: 0.42 × 0.36 × 0.27 mm3
Wavelength: Mo Kα radiation (λ = 0.71073 Å)
μ: 2.64 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω scans
θmax, completeness: 29.9°, >98 %
N(hkl)measured, N(hkl)unique, Rint: 1563, 49, 0.035
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 49
N(param)refined: 3
Programs: Bruker, 1 Olex2, 2 SHELX 3

In an attempt to obtain novel ternary potassium sulfidocerates, K2S (2.12 g, 19.2 mmol, 1 eq.), K2S2 (2.74 g, 19.2 mmol, 1 eq.) and Ce (2.70 g, 19.2 mmol, 1 eq.) are fused inside a silica glass ampoule using an oxygen methane hand torch. The reaction product is extracted manually and finely ground. 0.09 g of the resulting solid of the nominal composition “K4CeS3” is suspended in 2 ml of 2,6–dimethylpyridine and transferred in a 5 mL glass vial and sealed. The reaction mixture is heated to 423.15 K for 48 h and allowed to cool to room temperature within 12 h. Visual inspection of the resulting reaction mixture is carried out under a light microscope and yields transparent light-yellow plates of K2S as determined by crystallographic refinement, alongside various Ce-containing species. Collection and handling of the data for the single crystal measurement is illustrated in Table 1.

2 Comment

The series of A2S (A = alkali metal) exhibits a renewed interest due to potential applications in alkali metal ion batteries. 5 , 6 As an example, K2S depicts a high theoretical gravimetric energy density which may be used in next-generation potassium-sulfur batteries, where the low redox-voltage of potassium plays a crucial rule in the reversible redox process of K2S3–K2S. 7

Despite this renewing interest in binary chalcogenides, all reported structural data of the series of A2S are based on powder diffraction data, ranging back to 1925 when Claassen et al. reported Li2S to crystallize in the anti-fluorite structure type. 8 The K2S structure presented herein represents the first single crystal structure determination within the A2S family.

The refinement results are in a good agreement with the literature data obtained through powder diffraction by Zintl et al. 9 and West. 10 The obtained cell parameters in the F m 3 m modification at 100(1) K of a = 7.3642(5) Å and V = 399.37(8) Å3 are comparable to those obtained from powder diffraction analysis at room temperature a = 7.370 Å and V = 400.32 Å3. 10 The slight difference could be attributed to the thermal expansion. The asymmetric unit contains one K+ cation and one S2− anion with a K–S distance of 3.1888(2) Å, compared to literature reports in the range of 3.1826 Å to 3.2069 Å. 10

We note in passing that an orthorhombic modification of K2S was reported based on powder diffraction data by Vegas et al. where they remarked a phase transition upon compression at about 6 GPa into a distorted Ni2In-structure type adopting Pmma space group. 11

Other members of the A2Ch x family (Ch = Chalcogen) were recently obtained in crystalline form through solvothermal treatment, such as K2Se2, K2Se2 12 and K2Te x with x = 1, 2, and 3. 13 It is therefore expected, that further single crystalline representatives of A2Ch can be obtained, either through recrystallization or in situ formation.

A recrystallization of pure K2S under otherwise unchanged conditions does not yield single crystalline material. This indicates that the crystallization was achieved via the formal decomposition during the solvothermal treatment. The ternary compound “K4CeS3” does not yield any reflexes in the PXRD, indicating amorphous or glassy constitution. The influence of a (slow) decomposition to yield small-enough concentrations of K2S for crystallization versus a potential templating effect of side products will be investigated in future studies.


Corresponding author: Günther Thiele, Fachbereich Biologie, Chemie und Pharmazie, Freie Universität Berlin, Fabeckstr, 34–36, 14195 Berlin, Germany; and Institut für Anorganische und Allgemeine Chemie, Universität Freiburg, Albertstr, 21, 79104 Freiburg i. Br., Germany, E-mail:

Acknowledgements

Core facility BioSupraMol supported by the DFG is acknowledged for X–ray diffraction time. We thank Prof. Nicola Pinna and Dr. Patricia Russo for PXRD measurement time at Humboldt Universität Berlin. We acknowledge support by the Open Access Fund of Freie Universität Berlin.

References

1. BRUKER. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Suche in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar PubMed PubMed Central

4. Klemm, W.; Sodomann, H.; Langmesser, P. Beiträge zur Kenntnis der Alkalimetallchalkogenide. Z. Anorg. Allg. Chem. 1939, 241, 281–304; https://doi.org/10.1002/zaac.19392410216.Suche in Google Scholar

5. Lai, N.-C.; Cong, G.; Lu, Y.-C. A High-Energy Potassium-Sulfur Battery Enabled by Facile and Effective Imidazole-Solvated Copper Satalysts. J. Mater. Chem. A 2019, 7, 20584–20589; https://doi.org/10.1039/c9ta06906b.Suche in Google Scholar

6. Zhao, X.; Lu, Y.; Qian, Z.; Wang, R.; Guo, Z. Potassium-Sulfur Batteries: Status and Perspectives. EcoMat 2020, 2, e12038; https://doi.org/10.1002/eom2.12038.Suche in Google Scholar

7. Ye, C.; Shan, J.; Chao, D.; Liang, P.; Jiao, Y.; Hao, J.; Gu, Q.; Davey, K.; Wang, H.; Qiao, S.-Z. Catalytic Oxidation of K2S via Atomic Co and Pyridinic N Synergy in Potassium–Sulfur Batteries. J. Am. Chem. Soc. 2021, 143, 16902–16907; https://doi.org/10.1021/jacs.1c06255.Suche in Google Scholar PubMed

8. Claassen, A. The Crystal Structure of the Anhydrous Alkali Monosulphides. I. Recl. Trav. Chim. Pays–Bas 1925, 44, 790–794; https://doi.org/10.1002/recl.19250440907.Suche in Google Scholar

9. Zintl, E.; Harder, A.; Dauth, B. Gitterstruktur der Oxyde, Sulfide, Selenide und Telluride des Lithiums, Natriums und Kaliums. Z. Elektr. Angew. Phys. 1934, 40, 588–593; https://doi.org/10.1002/bbpc.19340400811.Suche in Google Scholar

10. West, C. D. The Crystal Structures of Some Alkali Hydrosulfides and Monosulfides. Z. Kristallogr. Cryst. Mater. 1934, 88, 97–115; https://doi.org/10.1524/zkri.1934.88.1.97.Suche in Google Scholar

11. Vegas, A.; Grzechnik, A.; Hanfland, M.; Mühle, C.; Jansen, M. Antifluorite to Ni2 In-type Phase Transition in K2S at High Pressures. Solid State Sci. 2002, 4, 1077–1081; https://doi.org/10.1016/s1293-2558(02)01360-2.Suche in Google Scholar

12. Thiele, G.; Vondung, L.; Dehnen, S. β–K2Se2 and K2Se4: Missing Links in the Binary System K–Se. Z. Kristallogr. Cryst. Mater. 2016, 231, 257–260; https://doi.org/10.1515/zkri-2015-1921.Suche in Google Scholar

13. Albrecht, R.; Ruck, M. Chalcogenides by Reduction of their Dioxides in Ultra–Alkaline Media. Angew. Chem. Int. Ed. 2021, 60, 22570–22577; https://doi.org/10.1002/anie.202107642.Suche in Google Scholar PubMed PubMed Central

Received: 2025-02-03
Accepted: 2025-02-22
Published Online: 2025-03-14
Published in Print: 2025-06-26

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bi(1,3,4-oxadiazole), C16H4N10O14
  4. Crystal structure of catena-poly[(μ3-4,4′-oxydibenzoato- κ5 O,O: O,O:O)-bis(2,4,6-tri(3-pyridine)-1,3,5-triazine-κ1 N)cadmium(II)], C50H32CdN12O5
  5. The crystal structure of 1,4-diazepane-1,4-diium potassium trinitrate, C5H14KN5O9
  6. The crystal structure of benzyl 2,2,5,5-tetramethylthiazolidine-4-carboxylate, C15H21NO2S
  7. Crystal structure of 2-hydroxyethyl-triphenylphosphonium tetracyanidoborate, C24H20BN4OP
  8. The crystal structure of 1-methyl-3-(N-methylnitrous amide–N-methylene) imidazolidine-2,4,5-trione
  9. Crystal structure of N-((3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-(2,2,2-trifluoroacetyl)-1H-pyrazol-5-yl)carbamoyl)-2,6-difluorobenzamide, C20H7Cl2F8N5O3S
  10. Crystal structure of 5-(2,2-difluoropropyl)-5-methylbenzo[4,5]imidazo[2,1-a] isoquinolin-6(5H)-one, C20H18F2N2O
  11. The crystal structure of N′,N″-[1,2-bis(4-chlorophenyl)ethane-1,2-diylidene]bis(furan-2- carbohydrazide), C24H16Cl2N4O4
  12. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromoantimony(III), [C25H21BrP]+[SbBr4]
  13. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromidoindium(III), [C25H21BrP]+[InBr4]
  14. The crystal structure of 4-carboxy-2-oxobutan-1-aminium chloride, C5H10ClNO3
  15. Crystal structure of (4-(4-chlorophenyl)-1H-pyrrole-3-carbonyl)ferrocene, C21H16ClFeNO
  16. The crystal structure of dichlorido(η6-p-cymene)(triphenylarsine)ruthenium(II), C28H29AsCl2Ru
  17. Crystal structure of (Z)-2-hydroxy-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H16N2O2
  18. The crystal structure of 10-(1-bromoethyl)-14-(bromomethyl)dibenzo[a, c]acridine, C24H17NBr2
  19. Synthesis and crystal structure of 6-methoxy-7-[(4-methoxyphenyl)methoxy]-2H-1-benzopyran-2-one, C18H16O5
  20. Synthesis and crystal structure of ethyl 4-((4-trifluoromethylbenzyl)amino)benzo, C17H16F3NO2
  21. The crystal structure of (Z)-2-(tert-butyl)-6-(7-(tert-butyl)-5-methylbenzo[d][1,3]oxathiol-2-ylidene)-4-methylcyclohexa-2,4-dien-1-one, C23H28O2S
  22. The crystal structure of (R)-2-aminobutanamide hydrochloride, C4H11ClN2O
  23. Crystal structure of bromido[hydridotris(3-tert-butyl-5-isopropylpyrazolyl)borato-κ3 N,N′,N″]copper(II), C30H52BBrCuN6
  24. Crystal structure of chlorido{hydridotris[3-mesityl-5-methyl-1H-pyrazol-1-yl-κN3]borato}-copper(II) dichloromethane monosolvate
  25. Crystal structure of 4-[3,5-bis(propan-2-yl)-1H-pyrazol-4-yl]pyridine, C14H19N3
  26. Crystal structure of ((4-(4-bromophenyl)-1H-pyrrol-3-yl)methyl)ferrocene, C21H16BrFeNO
  27. Crystal structure of [(4-chlorobenzyl)triphenylphosphonium] dichloridocopper(I), {[C25H21ClP]+[CuCl2]}n
  28. The crystal structure of {Cu(2,9-diisopropyl-4,7-diphenyl-1,10-phenanthroline)[4,5-bis(diphenylphosphino)-9,9-dimethylxanthene]}+ PF6·1.5(EtOAC)
  29. Crystal structure of 3,5-bis(t-butyl)-1H-pyrazol-4-amine, C11H21N3
  30. Crystal structure of [(2,4-dichlorobenzyl)triphenylphosphonium] trichloridocopper(II), [C25H20Cl2P]+[CuCl3]
  31. The crystal structure of dipotassium sulfide, K2S
  32. Crystal structure of (4-(4-methoxyphenyl)-1H-pyrrole-3-carbonyl)ferrocene, C22H19FeNO2
  33. Crystal structure of (E)-6-(4-methylpiperazin-1-yl)-2-(4-(trifluoromethyl)benzylidene)-3, 4-dihydronaphthalen-1(2H)-one, C23H23F3N2O
  34. Crystal structure of (E)-6-morpholino-2-(4-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C22H20F3NO2
  35. Crystal structure of Ce9Ir37Ge25
  36. The crystal structure of ethyl 6-(2-nitrophenyl)imidazo[2,1-b]thiazole-3-carboxylate, C14H11N3O4S
  37. Crystal structure of (4-(4-isopropylphenyl)-1H-pyrrol-3-yl)(ferrocenyl)methanone, C24H23FeNO
  38. Crystal structure of bis(methylammonium) tetrathiotungstate(VI), (CH3NH3)2[WS4]
  39. Crystal structure of 6,11-dihydro-12H-benzo[e]indeno[1,2-b]oxepin-12-one, C17H12O2
  40. Crystal structure of 3-[(4-phenylpiperidin-1-yl)methyl]-5-(thiophen-2-yl)-2,3-dihydro-1,3,4- oxadiazole-2-thione, C18H19N3OS2
  41. Crystal structure of N-isopropyl-1,8-naphthalimide C15H13NO2
  42. TiNiSi-type EuPdBi
  43. Crystal structure of 1-(p-tolylphenyl)-4-(2-thienoyl)-3-methyl-1H-pyrazol-5-ol, C16H14N2O2S
  44. The crystal structure of 3-(3-carboxypropyl)-2-nitro-1H-pyrrole 1-oxide, C7H9N3O5
  45. The crystal structure of tetraaqua-bis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k2O:N)-tetrakis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k1N)trizinc(II) hexahydrate C36H52N18O32Zn3
  46. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 4-hydroxy-3,5-dimethoxybenzoate monohydrate, C25H30FN3O9
  47. Crystal structure of bis(DL-1-carboxy-2-(1H-indol-3-yl)ethan-1-aminium) oxalate — acetic acid (1/2)
  48. Crystal structure of methyl (E)-4-((4-methylphenyl)sulfonamido)but-2-enoate, C12H15NO4S
  49. The crystal structure of actarit, C10H11NO3
  50. The crystal structure of bicyclol, C19H18O9
  51. The crystal structure of topiroxostat, C13H8N6
  52. Crystal structure of 2,2-dichloro-N-methyl-N-(4-p-tolylthiazol-2-yl)acetamide, C13H12Cl2N2OS
  53. Crystal structure of 4-(trifluoromethyl)-7-coumarinyl trifluoromethanesulfonate C11H4F6O5S
  54. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6)-((Z)-N,N′-bis(2-(dimethylamino)phenyl)carbamimidato-κ1N)potassium(I)
  55. Crystal structure of (Z)-2-(5-((4-(dimethylamino)naphthalen-1-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid, C18H16N2O3S2
  56. Crystal structure of (4-fluorobenzyl)triphenylphosphonium bromide, C25H21BrFP
  57. The crystal structure of dichlorido-[6-(pyridin-2-yl)phenanthridine-κ2N, N′]zinc(II)-chloroform (1/1), C19H13N2ZnCl5
  58. Crystal structure of (E)-(3-(2,4-dichlorophenyl)acryloyl)ferrocene, C19H14Cl2FeO
  59. The crystal structure of (E)-7-chloro-1-cyclopropyl-6-fluoro-3-((2-hydroxybenzylidene)amino)quinolin-4(1H)-one, C19H14ClFN2O2
  60. Crystal structure of 2-bromo-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13BrFNO4S2
  61. Crystal structure of 2-chloro-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13ClFNO4S2
  62. Crystal structure of 5-(2,2-difluoropropyl)-5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline-3-carbonitrile, C20H15F2N3O
Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0061/html
Button zum nach oben scrollen