Startseite The crystal structure of dichlorido(η6-p-cymene)(triphenylarsine)ruthenium(II), C28H29AsCl2Ru
Artikel Open Access

The crystal structure of dichlorido(η6-p-cymene)(triphenylarsine)ruthenium(II), C28H29AsCl2Ru

  • Zanele Morerwa und Hadley S. Clayton ORCID logo EMAIL logo
Veröffentlicht/Copyright: 18. Februar 2025

Abstract

C28H29AsCl2Ru, monoclinic, P21/n (no. 14), a = 15.4135(9) Å, b = 9.2514(5) Å, c = 35.444(2) Å, β = 97.000(3)°, V = 5016.5(5) Å3, Z = 8, R gt (F) = 0.0537, wRref(F2) = 0.1127, T = 100 K.

CCDC no.: 2417739

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Red hexagonal
Size: 0.20 × 0.45 × 0.62 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 2.16 mm−1
Diffractometer, scan mode: Bruker (D8 Quest), φ and ω scan
θmax, completeness: 28.3°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 273096, 12482, 0.085
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 10,807
N(param)refined: 583
Programs: Bruker 1 , SHELX 2 , Olex2 3
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

x y z Uiso*/Ueq
C1 0.4307 (4) 0.9230 (6) 0.70430 (16) 0.0354 (13)
H1A 0.494189 0.922206 0.711286 0.053*
H1B 0.403079 0.976654 0.723490 0.053*
H1C 0.416717 0.969654 0.679484 0.053*
C2 0.3971 (3) 0.7706 (6) 0.70224 (14) 0.0255 (10)
C3 0.4232 (3) 0.6699 (6) 0.73213 (13) 0.0232 (10)
H3 0.462326 0.700278 0.753451 0.028*
C4 0.3922 (3) 0.5272 (5) 0.73059 (12) 0.0213 (9)
H4 0.409672 0.463234 0.751082 0.026*
C5 0.3347 (3) 0.4768 (6) 0.69863 (13) 0.0217 (9)
C6 0.3077 (3) 0.5759 (6) 0.66936 (13) 0.0238 (10)
H6 0.267683 0.545901 0.648306 0.029*
C7 0.3395 (3) 0.7197 (6) 0.67094 (14) 0.0250 (10)
H7 0.321726 0.783537 0.650461 0.030*
C8 0.2275 (4) 0.3145 (7) 0.72268 (17) 0.0409 (14)
H8A 0.247831 0.346449 0.748610 0.061*
H8B 0.206771 0.214438 0.723255 0.061*
H8C 0.179512 0.376924 0.711736 0.061*
C9 0.3032 (3) 0.3234 (6) 0.69827 (14) 0.0275 (11)
H9 0.352044 0.262438 0.710762 0.033*
C10 0.2754 (4) 0.2605 (7) 0.65864 (16) 0.0410 (15)
H10A 0.226086 0.316188 0.646019 0.061*
H10B 0.257773 0.159411 0.661003 0.061*
H10C 0.324528 0.265606 0.643562 0.061*
C11 0.3700 (3) 0.5365 (5) 0.57964 (12) 0.0199 (9)
C12 0.2939 (3) 0.6151 (7) 0.56979 (14) 0.0322 (12)
H12 0.292474 0.715114 0.575757 0.039*
C13 0.2200 (4) 0.5485 (9) 0.55126 (15) 0.0422 (16)
H13 0.167908 0.602775 0.544955 0.051*
C14 0.2218 (4) 0.4037 (8) 0.54195 (16) 0.0451 (17)
H14 0.171576 0.358633 0.528760 0.054*
C15 0.2969 (4) 0.3250 (7) 0.55196 (16) 0.0384 (14)
H15 0.298354 0.225320 0.545663 0.046*
C16 0.3705 (3) 0.3899 (6) 0.57109 (14) 0.0279 (11)
H16 0.421467 0.333947 0.578406 0.033*
C17 0.4810 (3) 0.8107 (5) 0.59428 (13) 0.0205 (9)
C18 0.4470 (4) 0.8569 (6) 0.55764 (14) 0.0304 (11)
H18 0.413324 0.792822 0.540802 0.037*
C19 0.4632 (4) 0.9972 (6) 0.54625 (16) 0.0350 (13)
H19 0.439648 1.029364 0.521670 0.042*
C20 0.5133 (4) 1.0902 (6) 0.57039 (18) 0.0369 (13)
H20 0.525621 1.184597 0.561918 0.044*
C21 0.5459 (4) 1.0472 (6) 0.60689 (17) 0.0323 (12)
H21 0.579263 1.111986 0.623646 0.039*
C22 0.5285 (3) 0.9061 (5) 0.61865 (14) 0.0260 (10)
H22 0.549767 0.875907 0.643699 0.031*
C23 0.5661 (3) 0.5256 (5) 0.58785 (13) 0.0188 (9)
C24 0.5621 (3) 0.5325 (5) 0.54825 (13) 0.0223 (9)
H24 0.512470 0.573603 0.533638 0.027*
C25 0.6308 (3) 0.4791 (5) 0.53023 (13) 0.0223 (9)
H25 0.628239 0.484284 0.503347 0.027*
C26 0.7028 (3) 0.4184 (5) 0.55155 (14) 0.0234 (10)
H26 0.749857 0.382344 0.539283 0.028*
C27 0.7066 (3) 0.4101 (5) 0.59090 (13) 0.0230 (10)
H27 0.755980 0.367583 0.605381 0.028*
C28 0.6381 (3) 0.4639 (5) 0.60922 (13) 0.0208 (9)
H28 0.640823 0.458269 0.636100 0.025*
C29 0.9346 (4) 0.4444 (6) 0.70343 (15) 0.0334 (12)
H29A 0.919499 0.400617 0.678305 0.050*
H29B 0.907027 0.389262 0.722375 0.050*
H29C 0.998164 0.443182 0.710084 0.050*
C30 0.9023 (3) 0.5979 (5) 0.70270 (13) 0.0239 (10)
C31 0.9299 (3) 0.6959 (5) 0.73296 (13) 0.0222 (9)
H31 0.969439 0.663320 0.753878 0.027*
C32 0.9001 (3) 0.8385 (5) 0.73253 (12) 0.0205 (9)
H32 0.919500 0.901062 0.753081 0.025*
C33 0.8404 (3) 0.8914 (5) 0.70137 (13) 0.0213 (9)
C34 0.8125 (3) 0.7961 (6) 0.67152 (13) 0.0248 (10)
H34 0.772602 0.828562 0.650693 0.030*
C35 0.8432 (3) 0.6524 (6) 0.67221 (13) 0.0265 (11)
H35 0.823757 0.590099 0.651597 0.032*
C36 0.7320 (4) 1.0455 (7) 0.72675 (17) 0.0380 (13)
H36A 0.685373 0.982954 0.714637 0.057*
H36B 0.709749 1.144171 0.728467 0.057*
H36C 0.751857 1.009258 0.752337 0.057*
C37 0.8091 (3) 1.0455 (6) 0.70291 (14) 0.0258 (10)
H37 0.857327 1.104123 0.716768 0.031*
C38 0.7828 (4) 1.1161 (7) 0.66429 (15) 0.0391 (14)
H38A 0.832641 1.114829 0.649565 0.059*
H38B 0.764972 1.216295 0.667981 0.059*
H38C 0.733964 1.062572 0.650540 0.059*
C39 0.8681 (3) 0.8490 (5) 0.58198 (12) 0.0193 (9)
C40 0.8693 (3) 0.9987 (5) 0.57829 (13) 0.0221 (9)
H40 0.920043 1.051568 0.587952 0.027*
C41 0.7968 (4) 1.0709 (6) 0.56058 (14) 0.0301 (11)
H41 0.798523 1.172933 0.557751 0.036*
C42 0.7218 (4) 0.9957 (7) 0.54697 (15) 0.0346 (13)
H42 0.672265 1.045707 0.534849 0.041*
C43 0.7196 (4) 0.8479 (7) 0.55112 (16) 0.0375 (13)
H43 0.668048 0.796025 0.542036 0.045*
C44 0.7927 (3) 0.7733 (6) 0.56861 (14) 0.0291 (11)
H44 0.790732 0.671245 0.571327 0.035*
C45 0.9779 (3) 0.5701 (5) 0.59173 (13) 0.0198 (9)
C46 0.9485 (3) 0.5336 (5) 0.55429 (13) 0.0235 (10)
H46 0.918296 0.603272 0.537948 0.028*
C47 0.9628 (4) 0.3963 (6) 0.54060 (14) 0.0288 (11)
H47 0.942400 0.372135 0.515008 0.035*
C48 1.0069 (3) 0.2947 (5) 0.56437 (15) 0.0273 (11)
H48 1.017525 0.201028 0.554959 0.033*
C49 1.0357 (3) 0.3293 (5) 0.60189 (15) 0.0272 (10)
H49 1.064601 0.258375 0.618245 0.033*
C50 1.0225 (3) 0.4666 (5) 0.61565 (13) 0.0233 (10)
H50 1.043623 0.490535 0.641187 0.028*
C51 1.0612 (3) 0.8582 (5) 0.58628 (12) 0.0189 (9)
C52 1.0477 (3) 0.8685 (5) 0.54684 (13) 0.0220 (9)
H52 0.994276 0.836105 0.533268 0.026*
C53 1.1124 (3) 0.9262 (5) 0.52743 (14) 0.0254 (10)
H53 1.103465 0.933335 0.500493 0.030*
C54 1.1901 (3) 0.9735 (5) 0.54731 (14) 0.0281 (11)
H54 1.235116 1.010530 0.533956 0.034*
C55 1.2024 (3) 0.9669 (5) 0.58674 (15) 0.0270 (11)
H55 1.254858 1.003032 0.600287 0.032*
C56 1.1382 (3) 0.9076 (5) 0.60658 (13) 0.0220 (9)
H56 1.147038 0.901059 0.633524 0.026*
As1 0.47082 (3) 0.61244 (5) 0.61142 (2) 0.01673 (10)
As2 0.96982 (3) 0.76514 (5) 0.61146 (2) 0.01582 (10)
Cl1 0.50618 (7) 0.33441 (12) 0.67030 (3) 0.0221 (2)
Cl2 0.60144 (7) 0.65452 (13) 0.69402 (3) 0.0231 (2)
Cl3 1.10543 (7) 0.71071 (13) 0.69237 (3) 0.0232 (2)
Cl4 1.01233 (7) 1.03494 (12) 0.67217 (3) 0.0211 (2)
Ru1 0.45179 (2) 0.57596 (4) 0.67819 (2) 0.01608 (8)
Ru2 0.95617 (2) 0.79378 (4) 0.67898 (2) 0.01528 (8)

1 Source of materials

All manipulations were carried out using Schlenck techniques under an inert atmosphere of argon. A solution of [Ru(η6-p-cymene)Cl2]2 (0.254 g, 0.106 mmol) and AsPh3 (0.320 g, 0.001 mmol) in CH2Cl2 (20 ml) were refluxed for 15 h. The solvent was removed under reduced pressure. The residue was washed with hexane (3 × 10 ml) to afford an orange-red solid. The ruthenium complex was crystallized by slow diffusion of petroleum ether 40–60 °C into a concentrated dichloromethane solution at ambient temperature. Red hexagonal crystals were obtained overnight. Yield (0.276 g, 86 %).

2 Experimental details

Intensity data was determined on a Bruker D8 Quest Microfocus with a Photon III detector diffractometer at 173 K. Data reduction was carried out using the SAINT-Plus version 6.02.6 software program, and SADABS was used to process empirical absorption correction. 1 The aromatic H atoms were placed in geometrically idealised positions and constrained to maintain fixed distances relative to their parent carbon atoms, with a specified C–H bond length of 0.93 Å for aromatic C–H bonds with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C). 2 The structure was solved in the Olex2-1.5 suite of programs, using charge flipping and refined with SHELXL-2019/3 refinement package. 3 , 4 Diagrams and publication material were generated using ORTEP-3. 5

3 Discussion

Drug resistance to cancer and malaria poses a significant challenge concerning therapeutic interventions. Recent investigations into the anticancer and antimalarial properties of half-sandwich ruthenium(II)-arene complexes have highlighted the efficacy of this class of complexes against various cancers and malaria. 6 , 7 Notably, p-cymene ruthenium(II) complexes exhibit potential as therapeutic agents due to their unique properties and mechanisms of action. 8 , 9 In this paper, we report the crystal structure of the ruthenium complex, [RuCl2(η6-p-cymene)(AsPh3)].

The asymmetric unit contains two molecules (Ru1 and Ru2) which both exhibit a pseudo-octahedral structure. In this arrangement, the ruthenium centre is coordinated with two chloride ions, a triphenylarsine ligand and a hexahapto p-cymene ligand. The molecular structures of the two ruthenium complexes are nearly identical, with minor differences. The η6-p-cymene ring is planar, while the C=C bonds within the ring have slightly unequal bond lengths, ranging from 1.403 Å to 1.431 Å and 1.404 Å to 1.435 Å for complexes Ru1 and Ru2 respectively. The p-cymene ligand is asymmetrically bonded to ruthenium, with Ru1–C(Arene) bond lengths in the range 2.173–2.223 Å, to accommodate the sterically demanding AsPh3 ligand. The Ru–Arene(centroid) distance was also measured as 1.686 Å and 1.688 Å for Ru1 and Ru2 complexes, respectively, which is within the range of similar reported structures in literature. 8 These measurements indicate favourable proximity that allows for adequate overlap between the metal d-orbital and the π-system of the cymene ligand, which is crucial for stabilizing the overall structure. 10 The Ru–As bond lengths are measured at 2.4430(5) Å and 2.4424(5) Å for Ru1 and Ru2 complexes, respectively. The average Ru–Cl bond length is 2.417 Å for both complexes, and falls within the range of 2.2971–2.4357 Å for previously reported complexes of this type. 11 , 12 Furthermore, the Cl–Ru–Cl angles measured at 88.29(4)° and 88.23(4)° for Ru1 and Ru2, respectively, supports the pseudo-octahedral geometry assigned to the molecule and is comparable to values reported for similar complexes. 13 , 14

Weak intramolecular non-covalent interactions were identified in the structure, including hydrogen bonds and T-type intermolecular ππ stacking. The structural analysis reveals that the coordination environment around the ruthenium centre is influenced by both steric and electronic factors, contributing to the overall stability of the complex. The bond distances and angles are in agreement with previously reported data for ruthenium(II)–arene complexes.


Corresponding author: Hadley S. Clayton, Chemistry Department, University of South Africa, Unisa Science Campus, Johannesburg, 1709, South Africa, E-mail:

References

1. Bruker. APEX-5, SAINT-Plus (Version 8.8.4.0, Including XPREP) and SADABS (Version 2016); Bruker AXS Inc.: Madison,Wisconsin. USA, 2019.Suche in Google Scholar

2. Sheldrick, G. M. Crystal Structure Refinement with SHELX. Acta Crystallogr. 2015, C71, 3–8.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central

3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

4. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A.; Puschmann, H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment – Olex2 Dissected. Acta Crystallogr. A: Found. Adv. 2015, A71, 59–75. https://doi.org/10.1107/s2053273314022207.Suche in Google Scholar

5. Farrugia, L. J. ORTEP-3 for Windows (Version 2020.1). J. Appl. Crystallogr. 2012, 45, 849–854. https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

6. Graux, L. V.; Giorgi, M.; Buono, G.; Clavie, H. [RuCl2(η6-p-cymene)] Complexes Bearing Phosphinous Acid Ligands: Preparation, Application in C–H Bond Functionalization and Mechanistic Investigations. Dalton Trans. 2016, 45, 6491–6502. https://doi.org/10.1039/c5dt04683a.Suche in Google Scholar PubMed

7. Ma, X.; Guillet, S. G.; Peng, M.; Van Hecke, K.; Nolan, S. P. A Simple Synthesis of [RuCl2(NHC)(p-cymene)] Complexes and Their Use in Olefin Oxidation Catalysis. Dalton Trans. 2021, 50, 3959–3965. https://doi.org/10.1039/d1dt00030f.Suche in Google Scholar PubMed

8. Latiş, S.; Marschner, C.; Baumgartner, J.; Prince, S.; Biswas, S.; Chakraborty, S.; Garcia, K. G.; Heeren, R. M. A.; Van Nuffel, S.; Blom, B. Synthesis and In Vitro Anticancer Studies of Arene Ruthenium(II) and Arene Osmium(II) Complexes Bearing Arsine and Stibine Co-Ligands on Breast Cancer Cell-Lines. J. Organomet. Chem. 2023, 1001, 122891–122901. https://doi.org/10.1016/j.jorganchem.2023.122891.Suche in Google Scholar

9. Elsegood, M. R. J.; Smith, M. B.; Sanchez-Ballester, N. M. Dichloro(η6-p-Cymene)(Triphenylphosphine)Ruthenium(II). Acta Crystallogr. 2006, E62, m2838–m2840. https://doi.org/10.1107/s1600536806039869.Suche in Google Scholar

10. Betanzos-Lara, S.; Habtemariam, A.; Clarkson, G. J.; Sadler, P. J. Organometallic cis–Dichlorido Ruthenium(II) Ammine Complexes. Eur. J. Inorg. Chem. 2011, 3257–3264. https://doi.org/10.1002/ejic.201100250.Suche in Google Scholar PubMed PubMed Central

11. Adeniyi, A. A.; Ajibade, P. A. Exploring the Ruthenium–Ligands Bond and Their Relative Properties at Different Computational Methods. J. Chem. 2016, 672062.10.1155/2016/3672062Suche in Google Scholar

12. Kang, L.; Wang, B.; Thetford, A.; Wu, K.; Danaie, M.; He, Q.; Gibso, E. K.; Sun, L. D.; Asakura, H.; Catlow, C. R. A.; Wang, F. R. Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation. Angew Chem. Int. Ed. Engl. 2021, 60, 1212–1219. https://doi.org/10.1002/anie.202008370.Suche in Google Scholar PubMed PubMed Central

13. Rafols, L.; Josa, D.; Aguilà, D.; Barrios, L. A.; Roubeau, O.; Cirera, J.; Soto-Cerrato, V.; Pérez–Tomás, R.; Martínez, M.; Grabulosa, A.; Gamez, P. Piano-Stool Ruthenium(II) Complexes with Delayed Cytotoxic Activity: Origin of the Lag Time. Inorg. Chem. 2021, 60, 7974–7990. https://doi.org/10.1021/acs.inorgchem.1c00507.Suche in Google Scholar PubMed PubMed Central

14. Allison, M.; Caramés-Méndez, P.; Hofmann, B. J.; Pask, C. M.; Phillips, R. M.; Lord, R. M.; McGowan, P. C. Cytotoxicity of Ruthenium(II) Arene Complexes Containing Functionalized Ferrocenyl β-Diketonate Ligands. Organometallics 2023, 42, 1869–1881. https://doi.org/10.1021/acs.organomet.2c00553.Suche in Google Scholar PubMed PubMed Central

Received: 2025-01-20
Accepted: 2025-02-05
Published Online: 2025-02-18
Published in Print: 2025-06-26

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bi(1,3,4-oxadiazole), C16H4N10O14
  4. Crystal structure of catena-poly[(μ3-4,4′-oxydibenzoato- κ5 O,O: O,O:O)-bis(2,4,6-tri(3-pyridine)-1,3,5-triazine-κ1 N)cadmium(II)], C50H32CdN12O5
  5. The crystal structure of 1,4-diazepane-1,4-diium potassium trinitrate, C5H14KN5O9
  6. The crystal structure of benzyl 2,2,5,5-tetramethylthiazolidine-4-carboxylate, C15H21NO2S
  7. Crystal structure of 2-hydroxyethyl-triphenylphosphonium tetracyanidoborate, C24H20BN4OP
  8. The crystal structure of 1-methyl-3-(N-methylnitrous amide–N-methylene) imidazolidine-2,4,5-trione
  9. Crystal structure of N-((3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-(2,2,2-trifluoroacetyl)-1H-pyrazol-5-yl)carbamoyl)-2,6-difluorobenzamide, C20H7Cl2F8N5O3S
  10. Crystal structure of 5-(2,2-difluoropropyl)-5-methylbenzo[4,5]imidazo[2,1-a] isoquinolin-6(5H)-one, C20H18F2N2O
  11. The crystal structure of N′,N″-[1,2-bis(4-chlorophenyl)ethane-1,2-diylidene]bis(furan-2- carbohydrazide), C24H16Cl2N4O4
  12. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromoantimony(III), [C25H21BrP]+[SbBr4]
  13. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromidoindium(III), [C25H21BrP]+[InBr4]
  14. The crystal structure of 4-carboxy-2-oxobutan-1-aminium chloride, C5H10ClNO3
  15. Crystal structure of (4-(4-chlorophenyl)-1H-pyrrole-3-carbonyl)ferrocene, C21H16ClFeNO
  16. The crystal structure of dichlorido(η6-p-cymene)(triphenylarsine)ruthenium(II), C28H29AsCl2Ru
  17. Crystal structure of (Z)-2-hydroxy-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H16N2O2
  18. The crystal structure of 10-(1-bromoethyl)-14-(bromomethyl)dibenzo[a, c]acridine, C24H17NBr2
  19. Synthesis and crystal structure of 6-methoxy-7-[(4-methoxyphenyl)methoxy]-2H-1-benzopyran-2-one, C18H16O5
  20. Synthesis and crystal structure of ethyl 4-((4-trifluoromethylbenzyl)amino)benzo, C17H16F3NO2
  21. The crystal structure of (Z)-2-(tert-butyl)-6-(7-(tert-butyl)-5-methylbenzo[d][1,3]oxathiol-2-ylidene)-4-methylcyclohexa-2,4-dien-1-one, C23H28O2S
  22. The crystal structure of (R)-2-aminobutanamide hydrochloride, C4H11ClN2O
  23. Crystal structure of bromido[hydridotris(3-tert-butyl-5-isopropylpyrazolyl)borato-κ3 N,N′,N″]copper(II), C30H52BBrCuN6
  24. Crystal structure of chlorido{hydridotris[3-mesityl-5-methyl-1H-pyrazol-1-yl-κN3]borato}-copper(II) dichloromethane monosolvate
  25. Crystal structure of 4-[3,5-bis(propan-2-yl)-1H-pyrazol-4-yl]pyridine, C14H19N3
  26. Crystal structure of ((4-(4-bromophenyl)-1H-pyrrol-3-yl)methyl)ferrocene, C21H16BrFeNO
  27. Crystal structure of [(4-chlorobenzyl)triphenylphosphonium] dichloridocopper(I), {[C25H21ClP]+[CuCl2]}n
  28. The crystal structure of {Cu(2,9-diisopropyl-4,7-diphenyl-1,10-phenanthroline)[4,5-bis(diphenylphosphino)-9,9-dimethylxanthene]}+ PF6·1.5(EtOAC)
  29. Crystal structure of 3,5-bis(t-butyl)-1H-pyrazol-4-amine, C11H21N3
  30. Crystal structure of [(2,4-dichlorobenzyl)triphenylphosphonium] trichloridocopper(II), [C25H20Cl2P]+[CuCl3]
  31. The crystal structure of dipotassium sulfide, K2S
  32. Crystal structure of (4-(4-methoxyphenyl)-1H-pyrrole-3-carbonyl)ferrocene, C22H19FeNO2
  33. Crystal structure of (E)-6-(4-methylpiperazin-1-yl)-2-(4-(trifluoromethyl)benzylidene)-3, 4-dihydronaphthalen-1(2H)-one, C23H23F3N2O
  34. Crystal structure of (E)-6-morpholino-2-(4-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C22H20F3NO2
  35. Crystal structure of Ce9Ir37Ge25
  36. The crystal structure of ethyl 6-(2-nitrophenyl)imidazo[2,1-b]thiazole-3-carboxylate, C14H11N3O4S
  37. Crystal structure of (4-(4-isopropylphenyl)-1H-pyrrol-3-yl)(ferrocenyl)methanone, C24H23FeNO
  38. Crystal structure of bis(methylammonium) tetrathiotungstate(VI), (CH3NH3)2[WS4]
  39. Crystal structure of 6,11-dihydro-12H-benzo[e]indeno[1,2-b]oxepin-12-one, C17H12O2
  40. Crystal structure of 3-[(4-phenylpiperidin-1-yl)methyl]-5-(thiophen-2-yl)-2,3-dihydro-1,3,4- oxadiazole-2-thione, C18H19N3OS2
  41. Crystal structure of N-isopropyl-1,8-naphthalimide C15H13NO2
  42. TiNiSi-type EuPdBi
  43. Crystal structure of 1-(p-tolylphenyl)-4-(2-thienoyl)-3-methyl-1H-pyrazol-5-ol, C16H14N2O2S
  44. The crystal structure of 3-(3-carboxypropyl)-2-nitro-1H-pyrrole 1-oxide, C7H9N3O5
  45. The crystal structure of tetraaqua-bis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k2O:N)-tetrakis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k1N)trizinc(II) hexahydrate C36H52N18O32Zn3
  46. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 4-hydroxy-3,5-dimethoxybenzoate monohydrate, C25H30FN3O9
  47. Crystal structure of bis(DL-1-carboxy-2-(1H-indol-3-yl)ethan-1-aminium) oxalate — acetic acid (1/2)
  48. Crystal structure of methyl (E)-4-((4-methylphenyl)sulfonamido)but-2-enoate, C12H15NO4S
  49. The crystal structure of actarit, C10H11NO3
  50. The crystal structure of bicyclol, C19H18O9
  51. The crystal structure of topiroxostat, C13H8N6
  52. Crystal structure of 2,2-dichloro-N-methyl-N-(4-p-tolylthiazol-2-yl)acetamide, C13H12Cl2N2OS
  53. Crystal structure of 4-(trifluoromethyl)-7-coumarinyl trifluoromethanesulfonate C11H4F6O5S
  54. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6)-((Z)-N,N′-bis(2-(dimethylamino)phenyl)carbamimidato-κ1N)potassium(I)
  55. Crystal structure of (Z)-2-(5-((4-(dimethylamino)naphthalen-1-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid, C18H16N2O3S2
  56. Crystal structure of (4-fluorobenzyl)triphenylphosphonium bromide, C25H21BrFP
  57. The crystal structure of dichlorido-[6-(pyridin-2-yl)phenanthridine-κ2N, N′]zinc(II)-chloroform (1/1), C19H13N2ZnCl5
  58. Crystal structure of (E)-(3-(2,4-dichlorophenyl)acryloyl)ferrocene, C19H14Cl2FeO
  59. The crystal structure of (E)-7-chloro-1-cyclopropyl-6-fluoro-3-((2-hydroxybenzylidene)amino)quinolin-4(1H)-one, C19H14ClFN2O2
  60. Crystal structure of 2-bromo-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13BrFNO4S2
  61. Crystal structure of 2-chloro-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13ClFNO4S2
  62. Crystal structure of 5-(2,2-difluoropropyl)-5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline-3-carbonitrile, C20H15F2N3O
Heruntergeladen am 18.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0035/html
Button zum nach oben scrollen