Home The crystal structure of (bromido, chlorido)-tricarbonyl-(5,5′-dimethyl-2,2′-bipyridine)-rhenium(I), C15H12Br0.2Cl0.8N2O3Re1
Article Open Access

The crystal structure of (bromido, chlorido)-tricarbonyl-(5,5′-dimethyl-2,2′-bipyridine)-rhenium(I), C15H12Br0.2Cl0.8N2O3Re1

  • Lehlohonolo Moherane ORCID logo , Marcus Makhatshwa ORCID logo , Frederick P. Malan ORCID logo , Hendrik G. Visser and Amanda-Lee E. Manicum ORCID logo EMAIL logo
Published/Copyright: August 21, 2023

Abstract

C15H12Br0.2Cl0.8N2O3Re1, monoclinic, P21/c (no. 14), a = 14.6713(4) Å, b = 11.4724(3) Å, c = 9.6206(3) Å, β = 106.592 (3), V = 1551.87(8) Å3, Z = 4, Rgt(F) = 0.0452, wRref(F2) = 0.1110, T = 149.99(10) K.

CCDC no.: 2282749

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.22 × 0.17 × 0.07 mm
Wavelength: MoKα radiation (0.71073 Å)
μ: 8.46 mm−1
Diffractometer, scan mode: XtaLAB Synergy R, ω
θmax, completeness: 26.4°, >99 %
N(hkl)measured, N(hkl)unique, Rint: 23,005, 3168, 0.078
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2897
N(param)refined: 202
Programs: CrysAlisPro [1], Olex2 [2], WinGX [3], Shelx [4, 5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Br1a 0.65644 (13) 0.53894 (17) 0.9558 (2) 0.0426 (8)
C1 0.7829 (7) 0.7461 (9) 0.8499 (11) 0.042 (2)
C2 0.8801 (7) 0.5910 (9) 1.0348 (10) 0.041 (2)
C3 0.9002 (6) 0.6100 (7) 0.7672 (9) 0.0305 (19)
C11 0.6449 (6) 0.6219 (8) 0.5397 (11) 0.037 (2)
H11 0.652842 0.701428 0.568228 0.044*
C12 0.5804 (7) 0.5943 (9) 0.4041 (11) 0.043 (2)
C13 0.5696 (7) 0.4785 (10) 0.3664 (11) 0.044 (3)
H13 0.526251 0.456159 0.276604 0.053*
C14 0.6222 (7) 0.3930 (9) 0.4599 (11) 0.039 (2)
H14 0.616263 0.313091 0.433163 0.046*
C15 0.6833 (6) 0.4276 (7) 0.5925 (9) 0.0281 (17)
C16 0.5270 (7) 0.6895 (10) 0.3069 (13) 0.054 (3)
H16A 0.505978 0.747948 0.365444 0.082*
H16B 0.471405 0.656210 0.235714 0.082*
H16C 0.568669 0.726326 0.256323 0.082*
C21 0.8566 (6) 0.3210 (8) 0.9190 (9) 0.0329 (19)
H21 0.898313 0.355021 1.003397 0.039*
C22 0.8566 (7) 0.2007 (8) 0.9061 (10) 0.034 (2)
C23 0.7947 (7) 0.1515 (8) 0.7810 (11) 0.037 (2)
H23 0.791943 0.069321 0.767979 0.045*
C24 0.7379 (7) 0.2236 (8) 0.6772 (10) 0.035 (2)
H24 0.696326 0.191307 0.591452 0.041*
C25 0.7417 (6) 0.3438 (8) 0.6981 (9) 0.0282 (17)
C26 0.9212 (8) 0.1282 (10) 1.0244 (11) 0.047 (3)
H26A 0.986241 0.131901 1.016350 0.070*
H26B 0.899333 0.047064 1.014601 0.070*
H26C 0.920093 0.158389 1.119175 0.070*
Cl1b 0.65644 (13) 0.53894 (17) 0.9558 (2) 0.0426 (8)
N1 0.8012 (5) 0.3927 (6) 0.8196 (7) 0.0263 (15)
N2 0.6953 (5) 0.5412 (6) 0.6300 (8) 0.0298 (16)
O1 0.7824 (6) 0.8488 (8) 0.8583 (11) 0.067 (2)
O2 0.9306 (6) 0.5973 (7) 1.1505 (8) 0.060 (2)
O3 0.9638 (5) 0.6324 (6) 0.7276 (8) 0.0437 (16)
Re1 0.79487 (2) 0.57988 (3) 0.84168 (4) 0.02986 (14)
  1. aOccupancy: 0.184 (8), bOccupancy: 0.816 (8).

1 Source of materials

The synthesis of the starting synthon, fac-[NEt4]2[Re(CO)3(Br)3], was strictly performed under Schlenk conditions. The reported complex was synthesized according to published procedures [6, 7]. To fac-[NEt4]2[Re(CO)3(Br)3] (251 mg, 0.325 mmol) in methanol 5,5′-dimethyl- 2,2′-bipyridyl (bid; 119 mg, 0.648 mmol) was added and refluxed for 6 h at room temperature. The light-yellow precipitate was filtered off, dried, and weighed to yield the title complex. Crystals were obtained by recrystallization using warm methanol and dilute HCl solution and allowing the resultant solution to crystallize at room temperature. The molecular structure of fac-[Re(CO)3(5,5′-DiMBpy)(Cl0.82Br0.18)] was confirmed with SCXRD. Yield: 289 mg, IR (ATR, cm−1): vCO = 2024.8, 1900.8.

2 Experimental details

The aromatic and methyl H atoms were place in geometrically idealized positions and constrained to ride on their parent atoms, with C–H = 0.93 (aromatic) and 0.96 Ang (methyl) and their Uiso values were set to 1.2Ueq (aromatic) and 1.5Ueq (methyl). The highest peak is 2.82 eAng−3 and deepest hole is −1.04 eAng−3. The graphics were generated using the Mercury program with 50 % probability ellipsoids.

3 Comment

In the previous five years, the chemistry of the relatively inert and low oxidation state rhenium(I) (Re) and technetium(I) (Tc) was derived from the fac-[M(CO)3(H2O)3]+ precursor. This precursor has been studied and employed by numerous research groups, mainly for their significance in the nuclear medicine arena, such as radiopharmacy, photocatalysis, and currently, chemotherapy [7, 8]. Furthermore, the fac-[Re(H2O)3(CO)3]+ precursor is very useful for designing molecules with different properties and applying various coordination models such as the “2 + 1” and most recently introduced “2 + 1 + 1” mixed ligand approach [9]. The various coordination models, enables a wide range of rhenium(I) tricarbonyl complexes to be obtained by displacing the three labile water ligands with alternative ligands [8]. Specifically, rhenium(I) tricarbonyl diimine complexes, [(N,N′)Re(CO)3(X)] (X = halide), exhibit remarkable photophysical and photochemical properties, which can be altered by either the nature of diimine ligand (N,N′) or the L ligand itself (Cl, Br) as indicated by Wrighton and co-workers in the 1970s [10, 11]. These rhenium(I) complexes with their associated properties, are often applied in anti-microbial, anti-inflammatory, anti-viral and anti-tumor studies [12], [13], [14], [15], [16].

The title structure is a rhenium(I) tricarbonyl complex with a bid ligand and a mixed halogen (Cl0.82Br0.12) ligand. The rhenium metal center is fulfilled by a bid bidentate ligand coordinated equatorially, three facially coordinated carbonyl ligands, and a halogen (Cl/Br) ligand on the axial position producing a distorted octahedral geometry. The complex has associated bond angles of 101.3(4)° (C1–Re1–N2), 97.3(3)° (C2–Re1–N1), 94.9(3)° (C3–Re1–N2), and 75.1(3)° (N1–Re1–N2), and are comparable to the same angles of similar structures previously reported [17]. The Re–C bond distances (Re1–C1, Re1–C2, and Re1–C3) are 1.919(10), 1.925(10), and 1.911(10) Å, respectively, and they are comparable to similar reported structures in literature [18], [19], [20], [21]. Furthermore, the rhenium to nitrogen bond distances is 2.163(7) Å (Re1–N1) and 2.186(7) Å (Re1–N2), respectively, again comparable to reported structures [22], [23], [24], [25], [26]. The rhenium to halogen bond distance of 2.612 Å(Re1–Cl1/Br1) is longer compared to Re–Cl bond distances in literature [27], while comparable to Re–Br bond distances which appear in the range of 2.59–2.64 Å of similar structures in literature [28]. Thus, the two atoms (Cl and Br) at the axial position appear as a substitutional disorder and has been treated as such to refine using a free variable (final occupancy: Cl1 = 0.816(8); Br1 = 0.184(8)) where Cl1/Br1 have been constrained to occupy the same position.


Corresponding author: Amanda-Lee E. Manicum, Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa, E-mail:

Funding source: National Research Foundation of South Africa

Award Identifier / Grant number: 129468

Funding source: University of Pretoria

Funding source: University of the Free State

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by National Research Foundation of South Africa (Grant No. 129468), Tshwane University of Technology, the University of Pretoria and the University of the Free State.

  3. Conflict of interest statement: The authors declare no conflicts of interest.

References

1. System C. S. CrysAlisPro Software System; Rigaku Oxford Diffraction: Yarnton, UK, 2021.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–883; https://doi.org/10.1107/s0021889899006020.Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

6. Manicum, A., Schutte-Smith, M., Visser, H. G. The synthesis and structural comparison of fac-[Re(CO)3]+ containing complexes with altered β-diketone and phosphine ligands. Polyhedron 2018, 145, 80–87; https://doi.org/10.1016/j.poly.2018.01.022.Search in Google Scholar

7. Manicum, A., Alexander, O., Schutte-Smith, M., Visser, H. G. Synthesis, characterization and substitution reactions of fac-[Re(O,O- bid)(CO)3(P)] complexes, using the “2 + 1” mixed ligand model. J. Mol. Struct. 2020, 1209, 127953–127964; https://doi.org/10.1016/j.molstruc.2020.127953.Search in Google Scholar

8. Schutte-Smith, M., Marker, S. C., Wilson, J. J., Visser, H. G. Aquation and anation kinetics of rhenium(I) dicarbonyl complexes: relation to cell toxicity and bioavailability. Inorg. Chem. 2020, 59, 15888–15897; https://doi.org/10.1021/acs.inorgchem.0c02389.Search in Google Scholar PubMed

9. Manicum, A., Schutte-Smith, M., Malan, F. P., Visser, H. G. Steric and electronic influence of Re(I) tricarbonyl complexes with various coordinated β-diketones. J. Mol. Struct. 2022, 1264, 133278–133291; https://doi.org/10.1016/j.molstruc.2022.133278.Search in Google Scholar

10. Gallardo, H., Cepeda-Plaza, M., Nonell, S., Günther, G., Chamorro, E., Pizarro, N., Vega, A. Structural and photophysical properties of [(CO)3(phen)Re(l–Br)Re(phen)(CO)3] + [(CO)3Re(l–Br)3Re(CO)3]−: where does its luminescence come from? Polyhedron 2015, 97, 227–233; https://doi.org/10.1016/j.poly.2015.05.024.Search in Google Scholar

11. Kumar, A., Sun, S.-S., Lees, A. J. Photophysics and photochemistry of organometallic rhenium diimine complexes. Top. Organomet. Chem. 2010, 29, 1–35; https://doi.org/10.4103/0976-9668.71662.Search in Google Scholar PubMed PubMed Central

12. Kapp, L. E., Schutte-Smith, M., Twigge, L., Visser, H. G. Synthesis, characterization, and DNA binding of four imidazo[4,5-f]1,10-phenanthroline derivatives. J. Mol. Struct. 2022, 1247, 131235–131245; https://doi.org/10.1016/j.molstruc.2021.131235.Search in Google Scholar

13. Mkhatshwa, M., Moremi, J. M., Makgopa, K., Manicum, A. Nanoparticle functionalized with Re(I) tricarbonyl complexes for cancer theranostics. Int. J. Mol. Sci. 2021, 22, 6546–6563; https://doi.org/10.3390/ijms22126546.Search in Google Scholar PubMed PubMed Central

14. Matlou, M. L., Louis, H., Charlie, D. E., Agwamba, E. C., Amodu, I. O., Tembu, V. J., Manicum, A. Anticancer activities of Re(I) tricarbonyl and its imidazole-based ligands: insight from a theoretical approach. ACS Omega 2023, 8, 10242–10252; https://doi.org/10.1021/acsomega.2c07779.Search in Google Scholar PubMed PubMed Central

15. Moherane, L., Louis, H., Ekereke, E. E., Agwamba, E. C., Visser, H. G., Benjamin, I., Uwem, O., Edet, U. O., Manicum, A. Polypyridyl coordinated Re(I) complexes for human tenascin-C (TNC) as an antibreast cancer agent: an intuition from molecular modeling and simulations. Polycyclic Aromat. Compd. 2023, 1–18; https://doi.org/10.1080/10406638.2023.2189737.Search in Google Scholar

16. Manicum, A., Louis, H., Agwamba, E. C., Chima, C. M., Nzondomyo, W. J., Sithole, S. A. Acetylacetone and imidazole coordinated Re(I) tricarbonyl complexes: experimental, DFT studies, and molecular docking approach. Chem. Phys. Impact 2023, 6, 100165–100178; https://doi.org/10.1016/j.chphi.2023.100165.Search in Google Scholar

17. Moherane, L., Alexander, O. T., Schutte-Smith, M., Kroon, R. E., Mokolokolo, P. P., Biswas, S., Prince, S., Visser, H. G., Manicum, A. E. Polypyridyl coordinated rhenium(I) tricarbonyl complexes as model devices for cancer diagnosis and treatment. Polyhedron 2022, 228, 116178–116188; https://doi.org/10.1016/j.poly.2022.116178.Search in Google Scholar

18. Manicum, A. E., Schutte-Smith, M., Alexander, O. T., Twigge, L., Roodt, A., Visser, H. G. First kinetic data of the CO substitution in fac-[Re(L,L′-Bid)(CO)3(X)] complexes (L,L′-Bid = acacetylacetonate or tropolonate) by tertiary phosphines PTA and PPh3: synthesis and crystal structures of water-soluble rhenium(I) tri- and dicarbonyl complexes with 1,3,5-triaza-7- phosphaadamantane (PTA). Inorg. Chem. Commun. 2019, 101, 93–98; https://doi.org/10.1016/j.inoche.2019.01.014.Search in Google Scholar

19. Moherane, L., Alexander, O. T., Visser, H. G., Manicum, A. E. The crystal structure of [μ-hydroxido-bis[(5,5′-dimethyl-2,2′-bipyridine-κ2N,N′)- tricarbonylrhenium(I)] bromide hemihydrate, C30H26N4O9Re2Br. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 1027–1029; https://doi.org/10.1515/ncrs-2021-0210.Search in Google Scholar

20. Makhakhayi, L., Malan, F. P., Tembu, V. J., Nkambule, C. M., Manicum, A. E. The crystal structure of fac-tricarbonyl(N-benzoyl-N,N- cyclohexylmethylcarbamimidothioato-κ2S,O)-(pyridine-κN)rhenium(I), C23H24N3O4ReS. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 697–699; https://doi.org/10.1515/ncrs-2023-0157.Search in Google Scholar

21. Schutte-Smith, M., Visser, H. G. Crystal and molecular structures of fac-[Re(Bid)- (PPh3)(CO)3] [Bid is tropolone (TropH) and tribromotropolone (TropBr3H)]. Acta Crystallogr. 2022, C78, 351–359; https://doi.org/10.1107/s205322962200465x.Search in Google Scholar

22. Schutte-Smith, M., Roodt, A., Alberto, R., Twigge, L., Visser, H. G., Kirstena, L., Koen, R. Structures of rhenium(I) complexes with 3-hydroxyflavone and benzhydroxamic acid as O,O′- bidentate ligands and confirmation of p-stacking by solid-state NMR spectroscopy. Acta Crystallogr. 2019, C75, 378–387; https://doi.org/10.1107/s2053229619002717.Search in Google Scholar PubMed

23. Matlou, M. L., Malan, F. P., Nkadimeng, S., Mcgaw, L., Tembu, V. J., Manicum, A. E. Exploring the in vitro anticancer activities of Re(I) picolinic acid and its fluorinated complex derivatives on lung cancer cells: a structural study. J. Biol. Inorg. Chem. 2023, 28, 29–41; https://doi.org/10.1007/s00775-022-01971-2.Search in Google Scholar PubMed

24. Sithole, S. A., Malan, F. P., Katerere, D. R., Manicum, A. E. The crystal structure of fac-tricarbonyl(2-pyridin-2-yl-quinoline-κ2N,N′)- (pyrazole-κN)rhenium(I)nitrate, C20H14N4O3ReNO3. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 685–687; https://doi.org/10.1515/ncrs-2023-0152.Search in Google Scholar

25. Mkhatshwa, M., Malan, F. P., Makgopa, K., Manicum, A. E. The crystal structure of fac-tricarbonyl(6-bromo-2,2-bipyridine-κ2N,N)- (nitrato-κO)rhenium(I), C13H7BrN3O6Re. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 667–669; https://doi.org/10.1515/ncrs-2023-0141.Search in Google Scholar

26. Moremi, M. J., Alexander, O. T., Vatsha, B., Makgopa, K., Manicum, A. E. The crystal structure of fac-tricarbonyl(4,4-dimethyl-2,2-dipyridyl-κ2N,N′)- (pyrazole-κN)rhenium(I) nitrate, C18H16O3N4Re. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 33–35; https://doi.org/10.1515/ncrs-2020-0458.Search in Google Scholar

27. Chabolla, S. A., Dellamary, E. A., Machan, C. W., Tezcan, F. A., Kubiak, C. P. Combined steric and electronic effects of positional substitution on dimethyl-bipyridine rhenium(I)tricarbonyl electrocatalysts for the reduction of CO2. Inorg. Chim. Acta 2014, 422, 109–113; https://doi.org/10.1016/j.ica.2014.07.007.Search in Google Scholar

28. Heard, P. J., Sroisuwan, P., Tocher, D. A. Synthesis and reactivity of N,N,N′,N′-tetramethyldiaminomethane complexes of tricarbonylrhenium(I). X-ray molecular structures of [ReBr(CO)3(TMDM)] and [{Re(bipy)(CO)3}2(μ-OH)] [SbF6]. Polyhedron 2003, 22, 1321–1327; https://doi.org/10.1016/s0277-5387(03)00102-5.Search in Google Scholar

Received: 2023-06-28
Accepted: 2023-07-19
Published Online: 2023-08-21
Published in Print: 2023-10-26

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (N-([1,1′:4′,1″-terphenyl]-4,4′-diethyl)-2-(bis(pyridin-2-ylmethyl)amino)acetamide-κ4N,N,N″, O)tri(nitrato-kO, O′) samarium(III) - methanol - acetonitrile (1/1/1), C40H39SmN8O14
  4. The crystal structure of 6,6′-(((2-(dimethylamino)ethyl)azanediyl)bis(methylene))bis(2-chloro-4-methyl phenolate-κ4N,N,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)-titanium(IV), C27H27Cl2N3O6Ti
  5. N′-[(1E)-(4–Fluorophenyl)methylidene]adamantane-1-carbohydrazide, C18H21FN2O
  6. Crystal structure of 4-bromo-3-nitro-1H-pyrazole-5-carboxylic acid monohydrate, C4H2N3BrO4·H2O
  7. Crystal structure of dipyridine-k1N-tris(2,2,6,6-tetramethyl-5-oxohept-3-en-3-olato-k2O,O′)dysprosium(III), DyC43H67O6N2
  8. Crystal structure of cyclo[tetraiodido-bis{μ2-1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-isopropyl-imidazol)-k2N:N}dicadmiun(II)], C26H30N10Cd2I4
  9. The crystal structure of tert-butyl (E)-3-(2-(benzylideneamino)phenyl)-1H-indole-1-carboxylate, C26H24N2O2
  10. The crystal structure of 4-(3-carboxy-1-cyclopropyl-6-fluoro-8-methoxy-4-oxo-1,4- dihydroquinolin-7-yl)-2-methylpiperazin-1-ium 2,5-dihydroxybenzoate methanol solvate, C27H32FN3O9
  11. Crystal structure of (μ2-1-(4,4′-bipyridine-κ2N:N′)-bis[diaqua-(4-iodopyridine-2,6-dicarboxylato-κ3O,N,O′)–cobalt(II)], C24H20Co2I2N4O12
  12. The crystal structure of dimethyl 4,4′-(10,20-diphenylporphyrin-5,15-diyl)dibenzoate dichloromethane solvate, C49H36N4O4Cl2
  13. (E)-2-((E)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-en-2-ylidene)hydrazine-1-carbothioamide C14H23N3S1
  14. The crystal structure of [1-(4-(trifluoromethyl)phenyl)-3,4-dihydroquinolin-2(1H)-one], C16H12F3NO
  15. Crystal structure of (E)-2-amino-N′-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)methylene)benzohydrazide – dimethylformamide – water (1/1/2), C15H16N4O3·C3H7NO·2H2O
  16. Crystal structure of 3-(4-bromophenyl)-5-methyl-1H-pyrazole, C10H9BrN2
  17. Crystal structure of 1,10-phenanthrolinium bromide dihydrate, C12H9N2Br
  18. Crystal structure of N-(4′-chloro-[1,1′-biphenyl]-2-yl)formamide, C13H10ClNO
  19. The crystal structure of nitroterephthalic acid, C8H5NO6
  20. Crystal structure of (2-((4-bromo-2,6-dichlorophenyl)amino)phenyl) (morpholino)methanone, C17H15BrCl2N2O2
  21. Crystal structure of tetraaqua-bis(ethanol-κO)-tetrakis(μ2-trifluoroacetate-κ2O:O′)-bis(trifluoroacetate-κ2O)digadolinium(III) Gd2C16H20O18F18
  22. The crystal structure of dimethyl 4,4′-[10,20-bis(2,6-difluorophenyl)porphyrin-5,15-diyl]dibenzoate chloroform solvate, C50H32Cl6F4N4O4
  23. The crystal structure of N,N′-((nitroazanediyl)bis(methylene))diacetamide, C6H12O4N4
  24. The crystal structure of [bis(2,2′-bipyridine-6-carboxylato-κ3N,N,O)magnesium(II)]dihydrate, C22H18N4O6Mg
  25. Crystal structure of poly[diaqua-(bis(μ2-1,4-bis(imidazol-1-ylmethyl)benzene)-κ2N,N′] cobalt(II)-tetraqua-bis(1,4-bis(imidazol-1-ylmethyl)benzene)-κ1N)-cobalt(II) di(2,5-thiophenedicarboxylate) dihydrate, C68H76Co2N16O16S2
  26. Crystal structure of poly[chlorido-μ2-chlorido-(μ2-1-[(2-ethyl-4-methyl-1H-imidazol-1-yl)methyl]-1H-benzotriazole-κN:N’)cadmium(II)], C13H15CdN5Cl2
  27. The crystal structure of (4-hydroxybenzenesulfonate)-k1O-6,6′-((1E,1′E)- (ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene)) bis(2-methoxyphenol)-κ2N,N,μ2O,O2O, O)-(methanol)-cobalt(II) sodium(I), C25H27CoN2NaO9S
  28. Crystal structure of (1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)(4-((2-methyl-6-(trifluoromethyl)pyrimidin-4-yl)amino)piperidin-1-yl)methanone, C17H18F6N6O
  29. Crystal structure of bis{[(cyclohexylimino)(phenylimino)-l5-(methyl)diethylazane-κ2N:N′]-(ethyl)-zinc(II)]}, C38H62N6Zn2
  30. Crystal structure of 2-[(4-bromobenzyl)thio]-5-(5-bromothiophen-2-yl)-1,3,4-oxadiazole, C13H8Br2N2OS2
  31. Crystal structure of 10-methoxy-7,11b,12,13-tetrahydro-6H-pyrazino [2′,3′:5,6]pyrazino[2,1-a]isoquinoline, C15H16N4O
  32. The crystal structure of 1-propyl-2-nitro-imidazole oxide, C6H9N3O3
  33. The crystal structure of 3-nitrobenzene-1,2-dicarboxylic acid–2-ethoxybenzamide (1/1), C17H16N2O8
  34. The structure of RUB-1, (C8H16N)6[B6Si48O108], a boron containing levyne-type zeolite, occluding N-methyl-quinuclidinium in the cage-like pores
  35. The crystal structure of diaqua-(naphthalene-4,5-dicarboxylate-1,8-dicarboxylic anhydride1O)-(4′-(4-(1H-benzimidazolyl-1-yl)phenyl)-2,2′:6′,2″-terpyridine-κ3N,N′,N″)–manganese(II) dihydrate, C42H27MnN5O9·2H2O
  36. Crystal structure of 6,6′-((1E,1′E)-hydrazine-1,2-diylidenebis(methanylylidene))bis (3-(3-bromopropoxy)phenol), C20H22Br2N2O4
  37. The crystal structure of 3-(2-hydroxyphenyl)-4-phenyl-6-(p-tolyl)-2H-pyran-2-one, C24H18O3
  38. Crystal structure of bis(μ2-2-(1,5-dimethyl–3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato-κ4O:O,N,O′)-(nitrato-κ2O,O′)dicobalt(II), C36H32Co2N8O4
  39. Synthesis and crystal structure of (3E,5S,10S,13S,14S,17Z)-17-ethylidene-10,13-dimethylhexadecahydro-3H-cyclopenta[α] phenanthren-3-one O-(4-fluorobenzoyl) oxime, C28H36FNO2
  40. The crystal structure of 4-aminiumbiphenyl benzenesulfonate, C18H17NO3S
  41. Synthesis and crystal structure of 1-(7-hydroxy-3-(4-hydroxy-3-nitrophenyl)-4-oxo-4H-chromen-8-yl)-N,N-dimethylmethanaminiumnitrate, C18H17N3O9
  42. Crystal structure of N-(Ar)-N′-(Ar′)-formamidine, C14H12Br2N2O
  43. The crystal structure of 4-(2,4-dichlorophenyl)-2-(4-fluorophenyl)-5-methyl-1H-imidazole, C16H11Cl2FN2
  44. Crystal structure of 1-(4–chlorophenyl)-4-benzoyl-3-methyl-1H-pyrazol-5-ol, C17H13ClN2O2
  45. The crystal structure of 5-amino-1-methyl-4-nitroimidazole, C4H6O2N4
  46. Crystal structure of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene-N,N′-bis(1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-1,3,2-diazaborol-2-yl)-l2-germenediamine, C63H94B2GeN8
  47. The crystal structure of (bromido, chlorido)-tricarbonyl-(5,5′-dimethyl-2,2′-bipyridine)-rhenium(I), C15H12Br0.2Cl0.8N2O3Re1
  48. Crystal structure of [N(E),N′(E)]-N,N′-(1,4-phenylenedimethylidyne)bis-3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C26H36N6
  49. The crystal structure of poly[2-(4-carboxypyridin-3-yl)terephthalpoly[diaqua-(μ4-2-(6-carboxylatopyridin-3-yl)terephthalato-κ5O,N:O′:O″,O‴)]) cadmium(II)] dihydrate, C28H20Cd3N2O16
  50. Crystal structure of [tetraaqua-bis((3-carboxy-5-(pyridin-4-yl)benzoate-κ1N)cobalt(II)] tetrahydrate, C26H32CoN2O16
  51. Crystal structure of bis(μ2-azido-κ2N:N)-tetrakis(azido-κ1N)-tetrakis(1,10-phenanthroline-κ2N,N′)dibismuth(III), C48H32N26Bi2
  52. Crystal structure of (Z)-N-(4-(4-(4-((4,5,6-trimethoxy-3-oxobenzofuran-2(3H)-ylidene)methyl)phenoxy)butoxy)phenyl)acetamide, C30H31NO8
  53. Crystal structure of poly[diaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-bis(μ2-5-carboxybenzene-1,3-dicarboxylato-O,O′:O″)-aqua-di-zinc dihydrate solvate], C27H28N4O16Zn2
  54. Crystal structure of 2-(3,5,5-trimethylcyclohex-2-en-1-ylidene)malononitrile, C12H14N2
  55. Crystal structure of chlorido-(5-nitro-2-phenylpyridine-κ2N,C)-[(methylsulfinyl)methane-κ1S]platinum(II), C13H13ClN2O3PtS
  56. The crystal structure of the co-crystal 1,4-dioxane–4,6-bis(nitroimino)-1,3,5-triazinan-2-one(2/1), C11H19N7O9
  57. Crystal structure of [N(E),N′(E)]-N,N′-(1,4-phenylenedimethylidyne)bis-3,5-dimethyl-1H-pyrazol-4-amine di-methanol solvate, C18H20N6·2(CH3OH)
  58. Crystal structure of catena-poly[bis(μ2-azido-k2N:N′)-(nitrato-K2N:N′)-bis(1,10-phenanthroline-K2N:N′)samarium(III)], C24H16N11O3Sm
  59. Crystal structure of (Z)-2-(4-((5-bromopentyl)oxy)benzylidene)-4,5,6-trimethoxybenzofuran-3(2H)-one, C23H25BrO6
  60. Crystal structure of bis(3,5-dimethyl-1H-pyrazol-4-ammonium) tetrafluoroterephthate, 2[C5H10N3][C8F4O4]
  61. Crystal structure of 2-amino-4-(2-fluoro-4-(trifluoromethyl)phenyl)-9-methoxy-1,4,5,6-tetrahydrobenzo[h]quinazolin-3-ium chloride, C20H18ClF4N3O
  62. Crystal structure of 6-(pyridin-3-yl)-1,3,5-triazine-2,4-diamine-sebacic acid (2/1), C13H17N6O2
Downloaded on 30.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0303/html?lang=en
Scroll to top button