Home Crystal structure of bis{[(cyclohexylimino)(phenylimino)-l5-(methyl)diethylazane-κ2N:N′]-(ethyl)-zinc(II)]}, C38H62N6Zn2
Article Open Access

Crystal structure of bis{[(cyclohexylimino)(phenylimino)-l5-(methyl)diethylazane-κ2N:N′]-(ethyl)-zinc(II)]}, C38H62N6Zn2

  • Hong-Fei Han ORCID logo EMAIL logo , Hao-Yang Li , Song Wang and Xue-Hong Wei
Published/Copyright: July 21, 2023

Abstract

C38H62N6Zn2, triclinic, P 1 (no. 2), a = 9.5907(4) Å, b = 10.6743(4) Å, c = 11.2593(4) Å, α =  107.6980 ( 10 ) , β =  113.5840 ( 10 ) , γ =  97.2290 ( 10 ) , V = 965.12(6) Å3, Z = 1, Rgt(F) = 0.0232, wRref(F2) = 0.0577, T = 200(2) K.

CCDC no.: 2261593

A part of the title coordination compound is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.35 × 0.33 × 0.30 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.28 mm−1
Diffractometer, scan mode: φ and ω
θmax, completeness: 25.1°, 97 %
N(hkl)measured, N(hkl)unique, Rint: 7251, 3331, 0.022
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 3149
N(param)refined: 211
Programs: Shelx [1], Bruker [2, 3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
Zn1 0.60539 (2) 0.40972 (2) 0.51052 (2) 0.01920 (7)
N1 0.44183 (15) 0.46831 (13) 0.33300 (13) 0.0178 (3)
N2 0.39439 (15) 0.26901 (13) 0.35955 (13) 0.0196 (3)
N3 0.23948 (16) 0.27281 (14) 0.13577 (14) 0.0244 (3)
C1 0.48522 (18) 0.53042 (16) 0.24683 (16) 0.0199 (3)
H1 0.4233 0.4662 0.1458 0.024*
C2 0.4477 (2) 0.66790 (17) 0.26216 (18) 0.0254 (4)
H2A 0.4998 0.7290 0.3631 0.031*
H2B 0.3317 0.6526 0.2258 0.031*
C3 0.5038 (2) 0.73836 (19) 0.1827 (2) 0.0331 (4)
H3A 0.4438 0.6821 0.0804 0.040*
H3B 0.4824 0.8288 0.1995 0.040*
C4 0.6803 (2) 0.75754 (19) 0.2307 (2) 0.0365 (4)
H4A 0.7409 0.8206 0.3310 0.044*
H4B 0.7130 0.7993 0.1751 0.044*
C5 0.7179 (2) 0.6208 (2) 0.21221 (19) 0.0327 (4)
H5A 0.8337 0.6360 0.2481 0.039*
H5B 0.6651 0.5608 0.1109 0.039*
C6 0.6616 (2) 0.54984 (18) 0.29112 (18) 0.0266 (4)
H6A 0.6825 0.4592 0.2731 0.032*
H6B 0.7232 0.6053 0.3935 0.032*
C7 0.35327 (18) 0.33511 (15) 0.27347 (16) 0.0182 (3)
C8 0.28979 (18) 0.15661 (15) 0.34987 (15) 0.0195 (3)
C9 0.3447 (2) 0.04614 (17) 0.37047 (18) 0.0261 (4)
H9 0.4483 0.0444 0.3831 0.031*
C10 0.2494 (2) −0.06100 (18) 0.3727 (2) 0.0316 (4)
H10 0.2886 −0.1354 0.3872 0.038*
C11 0.0981 (2) −0.06112 (18) 0.35419 (19) 0.0310 (4)
H11 0.0330 −0.1351 0.3553 0.037*
C12 0.0425 (2) 0.04837 (17) 0.33387 (17) 0.0268 (4)
H12 −0.0613 0.0494 0.3213 0.032*
C13 0.13690 (19) 0.15602 (17) 0.33178 (17) 0.0230 (3)
H13 0.0973 0.2304 0.3179 0.028*
C14 0.1342 (2) 0.34620 (19) 0.06832 (19) 0.0327 (4)
H14A 0.1373 0.3382 −0.0205 0.039*
H14B 0.1743 0.4447 0.1309 0.039*
C15 −0.0364 (2) 0.2925 (2) 0.0362 (2) 0.0488 (5)
H15A −0.0785 0.1961 −0.0290 0.073*
H15B −0.1003 0.3463 −0.0068 0.073*
H15C −0.0406 0.3004 0.1237 0.073*
C16 0.2077 (2) 0.12696 (18) 0.05327 (18) 0.0330 (4)
H16A 0.1322 0.1052 −0.0460 0.040*
H16B 0.1564 0.0714 0.0887 0.040*
C17 0.3547 (3) 0.0867 (2) 0.0590 (2) 0.0462 (5)
H17A 0.4088 0.1439 0.0279 0.069*
H17B 0.3249 −0.0099 −0.0029 0.069*
H17C 0.4260 0.0999 0.1558 0.069*
C18 0.8251 (2) 0.40070 (19) 0.5614 (2) 0.0302 (4)
H18A 0.8913 0.4925 0.5857 0.036*
H18B 0.8652 0.3804 0.6472 0.036*
C19 0.8492 (3) 0.2964 (2) 0.4505 (2) 0.0460 (5)
H19A 0.7856 0.2044 0.4259 0.069*
H19B 0.9616 0.2994 0.4875 0.069*
H19C 0.8158 0.3179 0.3664 0.069*

1 Source of materials

All manipulations were carried out under dry nitrogen using standard Schlenk and cannula techniques. Solvents were dried with appropriate drying agents, degassed, and stored over a potassium mirror or activated molecular sieves prior to use. ZnEt2 (1.0 M solution in hexane; Alfa Aesar) was obtained commercially and used as received. Et2NH (Aldrich) was dried over KOH and redistilled before use. Carbodiimine CyN=C=NC6H5 was prepared according to the literature procedures [5]. To a stirred solution of diethylamine (0.20 mL, 2.0 mmol) in hexane (15 mL), diethylzinc (2.00 mL of a 1.0 M solution in hexane, 2.0 mmol) was slowly dropped into the above solution at ambient temperature. The mixture was heated to 60  ° C for 12 h and then cooled to room temperature. Carbodiimine CyN=C=NC6H5 (0.401 g, 2.0 mmol) was added. The mixture was stirred for 8 h to afford a cloudy solution, which was filtered. The filtrate was concentrated to ca. 5 mL in vacuo and stored at 10 °C, yielding colorless crystals (0.36 g, 74.6 %). section

2 Experimental details

2.1 Comment

N,N-Bidentate ligands generated by the deprotonation of guanidines can provide a wide range of patterns by adjusting the type of the substituents on the conjugated N–C–N skeleton, and exhibit extensive utility in metal complexes [6]. Various types of metal guanidinate complexes and their properties have been reported, such as cobalt [7], titanium [8, 9], tungsten [10], cerium [11], platinum [12] and lutetium [13]. For zinc complex [14], several examples with guanidinate ligands have been studied [15], they exhibited good to excellent catalytic activity. With particular relevance to this work, the room temperature reaction between N-cyclohexyl-N-phenylmethanediimine and ZnMe2 yielded the dinuclear Zn alkyl complex [ { C5H10NC(NC6H11) (NC6H5) } ZnEt]2.

The title compound crystallised as the dimeric complex [ { C5H10NC(NC6H11) (NC6H5) } ZnEt]2, in which the zinc centre is described as distorted tetrahedral with bond angles in the range 61.94 ( 5 ) 130.37 ( 7 ) , four sites are occupied by three N atoms from two different μ2–guanidinato ligand and one C donor of the ethyl. The Zn1–N2 (2.0422(13) Å) and Zn1–N1 i (2.0968(12) Å) bond distances are shorter than Zn1–N1 (2.3119(12) Å) (symmetrycodes: (i) −x + 1, −y + 1, −z + 1). The Zn–N distance are comparable to those observed in the related literature [16]. The { C5H10NC(NC6H11)(NC6H5)}−1 anion coordinates two zinc centers in μ 2 η 2 : η 1 coordination modes through nitrogen atoms to a centrosymmetric dimer with Zn–Zn distance of 2.9550(4) Å. The dimer has an anti arrangement of guanidines ligands about the central Zn2N2 metallacycle, a likely consequence of the different steric requirements of the ligands at the zinc centre. The Zn2N2 core of the molecule is perfectly planar and forms an angle of 74.84 to the essentially planar ZnN2C metallacycle. In agreement with this postulate, the C(7)–N(3) bond length of 1 [1.369(2) Å] is intermediate between the value expected for C–N single and C=N double bonds. The C(7)–N(1) and C(7)–N(2) bond lengths (1.3613(19) and 1.369(2) Å, respectively) formed by guanidinato ligand are similar to those found in related CN bonds in the Zn complexes [17, 18]. Such bond lengths are consistent with the presence of a delocalized NCN ligand back bone.


Corresponding author: Hong-Fei Han, College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, Shanxi 030619, China; and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, China, E-mail:

Acknowledgment

This work was supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (award No. 201802098) and Laboratory of Protein-based Functional Materials (award No. 2022P010).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (award No. 201802098) and Laboratory of Protein-based Functional Materials (award No. 2022P010).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar PubMed PubMed Central

2. Bruker. Sadabs; Bruker AXS Inc.: Madison, WI, USA, 2000.Search in Google Scholar

3. Bruker. Apex3 and Saint; Bruker AXS Inc.: Madison, WI, USA, 2016.Search in Google Scholar

4. Brandenburg, K. Diamond. Visual Crystal Structure Information System. Version 4.2.2; Crystal Impact: Bonn, Germany, 2016.Search in Google Scholar

5. Ali, A. R., Ghosh, H., Patel, B. K. A greener synthetic protocol for the preparation of carbodiimide. Tetrahedron Lett. 2010, 51, 1019–1021; https://doi.org/10.1016/j.tetlet.2009.12.017.Search in Google Scholar

6. Forrest, S. J. K., Schluschass, B., Yuzik-Klimova, E. Y., Schneider, S. Nitrogen fixation via splitting into nitrido complexes. Chem. Rev. 2021, 121, 6522–6587; https://doi.org/10.1021/acs.chemrev.0c00958.Search in Google Scholar PubMed

7. Zhang, Y., Du, L., Liu, X., Ding, Y. Synthesis, characterization, and thermal properties of cobalt(II) compounds with guanidinate ligands. New J. Chem. 2018, 42, 9110–9115; https://doi.org/10.1039/c8nj01232f.Search in Google Scholar

8. Carmalt, C. J., Newport, A. C., O’Neill, S. A., Parkin, I. P., White, A. J., Williams, D. J. Synthesis of titanium(IV) guanidinate complexes and the formation of titanium carbonitride via low-pressure chemical vapor deposition. Inorg. Chem. 2005, 44, 615–619; https://doi.org/10.1021/ic049013u.Search in Google Scholar PubMed

9. Wu, B., Feng, R., Yin, Z.-B., Yan, H., Wang, X., Wang, G.-X., Wei, J., Xi, Z. Synthesis and structural analysis of titanium-μ-dinitrogen complex supported by di-anionic guanidinate ligands. Sci. China Chem. 2023, 66, 755–759; https://doi.org/10.1007/s11426-022-1490-8.Search in Google Scholar

10. Nolan, M. M., Touchton, A. J., Richey, N. E., Ghiviriga, I., Rocca, J. R., Abboud, K. A., McElwee-White, L. Synthesis and characterization of tungsten nitrido amido guanidinato complexes as precursors for chemical vapor deposition of WN(x)C(y) thin films. Eur. J. Inorg. Chem. 2018, 2018, 46–53; https://doi.org/10.1002/ejic.201701225.Search in Google Scholar PubMed PubMed Central

11. Kaur, P., Muriqi, A., Wree, J. L., Ghiyasi, R., Safdar, M., Nolan, M., Karppinen, M., Devi, A. Atomic/molecular layer deposition of cerium(III) hybrid thin films using rigid organic precursors. Dalton Trans. 2022, 51, 5603–5611; https://doi.org/10.1039/d2dt00353h.Search in Google Scholar PubMed

12. Sinha, N. K., Mishra, V., Thirupathi, N. Influence of the steric/electronic properties of N-aryl substituents in cycloplatinated guanidinate(1-) complexes on the formation of discrete Pt → Ag complexes and one-dimensional coordination polymer. Inorg. Chem. 2023, 62, 7644–7661; https://doi.org/10.1021/acs.inorgchem.2c04172.Search in Google Scholar PubMed

13. Jiang, W., Zhang, L., Zhang, L. Reactivity of a mixed methyl-aminobenzyl guanidinate lutetium complex towards iPrN=C=NiPr, CS2 and Ph2PH. Dalton Trans. 2022, 51, 12650–12660; https://doi.org/10.1039/d2dt02008d.Search in Google Scholar PubMed

14. Jones, C., Furness, L., Nembenna, S., Rose, R. P., Aldridge, S., Stasch, A. Bulky guanidinato and amidinato zinc complexes and their comparative stabilities. Dalton Trans. 2010, 39, 8788–8795; https://doi.org/10.1039/c0dt00589d.Search in Google Scholar PubMed

15. Li, J., Shi, J., Han, H., Guo, Z., Tong, H., Wei, X., Liu, D., Lappert, M. F. Synthesis, structures, and reactivities of guanidinatozinc complexes and their catalytic behavior in the Tishchenko reaction. Organometallics 2013, 32, 3721–3727; https://doi.org/10.1021/om400345f.Search in Google Scholar

16. Neuhäuser, C., Reinmuth, M., Kaifer, E., Himmel, H. J. Synthesis of oligomeric zinc complexes with bicyclic and acyclic guanidinate ligands. Eur. J. Inorg. Chem. 2012, 2012, 1250–1260; https://doi.org/10.1002/ejic.201101223.Search in Google Scholar

17. Barman, M. K., Baishya, A., Nembenna, S. Bulky guanidinate calcium and zinc complexes as catalysts for the intramolecular hydroamination. J. Organomet. Chem. 2019, 887, 40–47; https://doi.org/10.1016/j.jorganchem.2019.02.005.Search in Google Scholar

18. Börner, J., dos Santos Vieira, I., Jones, M. D., Doring, A., Kuckling, D., Flörke, U., Herres-Pawlis, S. Zinc complexes with guanidine-pyridine hybrid ligands – guanidine effect and catalytic activity. Eur. J. Inorg. Chem. 2011, 2011, 4441–4456; https://doi.org/10.1002/ejic.201100540.Search in Google Scholar

Received: 2023-06-04
Accepted: 2023-07-04
Published Online: 2023-07-21
Published in Print: 2023-10-26

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of (N-([1,1′:4′,1″-terphenyl]-4,4′-diethyl)-2-(bis(pyridin-2-ylmethyl)amino)acetamide-κ4N,N,N″, O)tri(nitrato-kO, O′) samarium(III) - methanol - acetonitrile (1/1/1), C40H39SmN8O14
  4. The crystal structure of 6,6′-(((2-(dimethylamino)ethyl)azanediyl)bis(methylene))bis(2-chloro-4-methyl phenolate-κ4N,N,O,O′)-(pyridine-2,6-dicarboxylato-N,O,O′)-titanium(IV), C27H27Cl2N3O6Ti
  5. N′-[(1E)-(4–Fluorophenyl)methylidene]adamantane-1-carbohydrazide, C18H21FN2O
  6. Crystal structure of 4-bromo-3-nitro-1H-pyrazole-5-carboxylic acid monohydrate, C4H2N3BrO4·H2O
  7. Crystal structure of dipyridine-k1N-tris(2,2,6,6-tetramethyl-5-oxohept-3-en-3-olato-k2O,O′)dysprosium(III), DyC43H67O6N2
  8. Crystal structure of cyclo[tetraiodido-bis{μ2-1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-isopropyl-imidazol)-k2N:N}dicadmiun(II)], C26H30N10Cd2I4
  9. The crystal structure of tert-butyl (E)-3-(2-(benzylideneamino)phenyl)-1H-indole-1-carboxylate, C26H24N2O2
  10. The crystal structure of 4-(3-carboxy-1-cyclopropyl-6-fluoro-8-methoxy-4-oxo-1,4- dihydroquinolin-7-yl)-2-methylpiperazin-1-ium 2,5-dihydroxybenzoate methanol solvate, C27H32FN3O9
  11. Crystal structure of (μ2-1-(4,4′-bipyridine-κ2N:N′)-bis[diaqua-(4-iodopyridine-2,6-dicarboxylato-κ3O,N,O′)–cobalt(II)], C24H20Co2I2N4O12
  12. The crystal structure of dimethyl 4,4′-(10,20-diphenylporphyrin-5,15-diyl)dibenzoate dichloromethane solvate, C49H36N4O4Cl2
  13. (E)-2-((E)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-en-2-ylidene)hydrazine-1-carbothioamide C14H23N3S1
  14. The crystal structure of [1-(4-(trifluoromethyl)phenyl)-3,4-dihydroquinolin-2(1H)-one], C16H12F3NO
  15. Crystal structure of (E)-2-amino-N′-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)methylene)benzohydrazide – dimethylformamide – water (1/1/2), C15H16N4O3·C3H7NO·2H2O
  16. Crystal structure of 3-(4-bromophenyl)-5-methyl-1H-pyrazole, C10H9BrN2
  17. Crystal structure of 1,10-phenanthrolinium bromide dihydrate, C12H9N2Br
  18. Crystal structure of N-(4′-chloro-[1,1′-biphenyl]-2-yl)formamide, C13H10ClNO
  19. The crystal structure of nitroterephthalic acid, C8H5NO6
  20. Crystal structure of (2-((4-bromo-2,6-dichlorophenyl)amino)phenyl) (morpholino)methanone, C17H15BrCl2N2O2
  21. Crystal structure of tetraaqua-bis(ethanol-κO)-tetrakis(μ2-trifluoroacetate-κ2O:O′)-bis(trifluoroacetate-κ2O)digadolinium(III) Gd2C16H20O18F18
  22. The crystal structure of dimethyl 4,4′-[10,20-bis(2,6-difluorophenyl)porphyrin-5,15-diyl]dibenzoate chloroform solvate, C50H32Cl6F4N4O4
  23. The crystal structure of N,N′-((nitroazanediyl)bis(methylene))diacetamide, C6H12O4N4
  24. The crystal structure of [bis(2,2′-bipyridine-6-carboxylato-κ3N,N,O)magnesium(II)]dihydrate, C22H18N4O6Mg
  25. Crystal structure of poly[diaqua-(bis(μ2-1,4-bis(imidazol-1-ylmethyl)benzene)-κ2N,N′] cobalt(II)-tetraqua-bis(1,4-bis(imidazol-1-ylmethyl)benzene)-κ1N)-cobalt(II) di(2,5-thiophenedicarboxylate) dihydrate, C68H76Co2N16O16S2
  26. Crystal structure of poly[chlorido-μ2-chlorido-(μ2-1-[(2-ethyl-4-methyl-1H-imidazol-1-yl)methyl]-1H-benzotriazole-κN:N’)cadmium(II)], C13H15CdN5Cl2
  27. The crystal structure of (4-hydroxybenzenesulfonate)-k1O-6,6′-((1E,1′E)- (ethane-1,2-diylbis(azaneylylidene))bis(methaneylylidene)) bis(2-methoxyphenol)-κ2N,N,μ2O,O2O, O)-(methanol)-cobalt(II) sodium(I), C25H27CoN2NaO9S
  28. Crystal structure of (1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)(4-((2-methyl-6-(trifluoromethyl)pyrimidin-4-yl)amino)piperidin-1-yl)methanone, C17H18F6N6O
  29. Crystal structure of bis{[(cyclohexylimino)(phenylimino)-l5-(methyl)diethylazane-κ2N:N′]-(ethyl)-zinc(II)]}, C38H62N6Zn2
  30. Crystal structure of 2-[(4-bromobenzyl)thio]-5-(5-bromothiophen-2-yl)-1,3,4-oxadiazole, C13H8Br2N2OS2
  31. Crystal structure of 10-methoxy-7,11b,12,13-tetrahydro-6H-pyrazino [2′,3′:5,6]pyrazino[2,1-a]isoquinoline, C15H16N4O
  32. The crystal structure of 1-propyl-2-nitro-imidazole oxide, C6H9N3O3
  33. The crystal structure of 3-nitrobenzene-1,2-dicarboxylic acid–2-ethoxybenzamide (1/1), C17H16N2O8
  34. The structure of RUB-1, (C8H16N)6[B6Si48O108], a boron containing levyne-type zeolite, occluding N-methyl-quinuclidinium in the cage-like pores
  35. The crystal structure of diaqua-(naphthalene-4,5-dicarboxylate-1,8-dicarboxylic anhydride1O)-(4′-(4-(1H-benzimidazolyl-1-yl)phenyl)-2,2′:6′,2″-terpyridine-κ3N,N′,N″)–manganese(II) dihydrate, C42H27MnN5O9·2H2O
  36. Crystal structure of 6,6′-((1E,1′E)-hydrazine-1,2-diylidenebis(methanylylidene))bis (3-(3-bromopropoxy)phenol), C20H22Br2N2O4
  37. The crystal structure of 3-(2-hydroxyphenyl)-4-phenyl-6-(p-tolyl)-2H-pyran-2-one, C24H18O3
  38. Crystal structure of bis(μ2-2-(1,5-dimethyl–3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)methyl)phenolato-κ4O:O,N,O′)-(nitrato-κ2O,O′)dicobalt(II), C36H32Co2N8O4
  39. Synthesis and crystal structure of (3E,5S,10S,13S,14S,17Z)-17-ethylidene-10,13-dimethylhexadecahydro-3H-cyclopenta[α] phenanthren-3-one O-(4-fluorobenzoyl) oxime, C28H36FNO2
  40. The crystal structure of 4-aminiumbiphenyl benzenesulfonate, C18H17NO3S
  41. Synthesis and crystal structure of 1-(7-hydroxy-3-(4-hydroxy-3-nitrophenyl)-4-oxo-4H-chromen-8-yl)-N,N-dimethylmethanaminiumnitrate, C18H17N3O9
  42. Crystal structure of N-(Ar)-N′-(Ar′)-formamidine, C14H12Br2N2O
  43. The crystal structure of 4-(2,4-dichlorophenyl)-2-(4-fluorophenyl)-5-methyl-1H-imidazole, C16H11Cl2FN2
  44. Crystal structure of 1-(4–chlorophenyl)-4-benzoyl-3-methyl-1H-pyrazol-5-ol, C17H13ClN2O2
  45. The crystal structure of 5-amino-1-methyl-4-nitroimidazole, C4H6O2N4
  46. Crystal structure of 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene-N,N′-bis(1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-1,3,2-diazaborol-2-yl)-l2-germenediamine, C63H94B2GeN8
  47. The crystal structure of (bromido, chlorido)-tricarbonyl-(5,5′-dimethyl-2,2′-bipyridine)-rhenium(I), C15H12Br0.2Cl0.8N2O3Re1
  48. Crystal structure of [N(E),N′(E)]-N,N′-(1,4-phenylenedimethylidyne)bis-3,5-bis(propan-2-yl)-1H-pyrazol-4-amine, C26H36N6
  49. The crystal structure of poly[2-(4-carboxypyridin-3-yl)terephthalpoly[diaqua-(μ4-2-(6-carboxylatopyridin-3-yl)terephthalato-κ5O,N:O′:O″,O‴)]) cadmium(II)] dihydrate, C28H20Cd3N2O16
  50. Crystal structure of [tetraaqua-bis((3-carboxy-5-(pyridin-4-yl)benzoate-κ1N)cobalt(II)] tetrahydrate, C26H32CoN2O16
  51. Crystal structure of bis(μ2-azido-κ2N:N)-tetrakis(azido-κ1N)-tetrakis(1,10-phenanthroline-κ2N,N′)dibismuth(III), C48H32N26Bi2
  52. Crystal structure of (Z)-N-(4-(4-(4-((4,5,6-trimethoxy-3-oxobenzofuran-2(3H)-ylidene)methyl)phenoxy)butoxy)phenyl)acetamide, C30H31NO8
  53. Crystal structure of poly[diaqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2N:N′)-bis(μ2-5-carboxybenzene-1,3-dicarboxylato-O,O′:O″)-aqua-di-zinc dihydrate solvate], C27H28N4O16Zn2
  54. Crystal structure of 2-(3,5,5-trimethylcyclohex-2-en-1-ylidene)malononitrile, C12H14N2
  55. Crystal structure of chlorido-(5-nitro-2-phenylpyridine-κ2N,C)-[(methylsulfinyl)methane-κ1S]platinum(II), C13H13ClN2O3PtS
  56. The crystal structure of the co-crystal 1,4-dioxane–4,6-bis(nitroimino)-1,3,5-triazinan-2-one(2/1), C11H19N7O9
  57. Crystal structure of [N(E),N′(E)]-N,N′-(1,4-phenylenedimethylidyne)bis-3,5-dimethyl-1H-pyrazol-4-amine di-methanol solvate, C18H20N6·2(CH3OH)
  58. Crystal structure of catena-poly[bis(μ2-azido-k2N:N′)-(nitrato-K2N:N′)-bis(1,10-phenanthroline-K2N:N′)samarium(III)], C24H16N11O3Sm
  59. Crystal structure of (Z)-2-(4-((5-bromopentyl)oxy)benzylidene)-4,5,6-trimethoxybenzofuran-3(2H)-one, C23H25BrO6
  60. Crystal structure of bis(3,5-dimethyl-1H-pyrazol-4-ammonium) tetrafluoroterephthate, 2[C5H10N3][C8F4O4]
  61. Crystal structure of 2-amino-4-(2-fluoro-4-(trifluoromethyl)phenyl)-9-methoxy-1,4,5,6-tetrahydrobenzo[h]quinazolin-3-ium chloride, C20H18ClF4N3O
  62. Crystal structure of 6-(pyridin-3-yl)-1,3,5-triazine-2,4-diamine-sebacic acid (2/1), C13H17N6O2
Downloaded on 9.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0267/html?lang=en
Scroll to top button