Home The crystal structure of 3-(1-(2-((5-methylthiophen-2-yl)methylene)hydrazinyl)ethylidene)chroman-2,4-dione, C17H14N2O3S
Article Open Access

The crystal structure of 3-(1-(2-((5-methylthiophen-2-yl)methylene)hydrazinyl)ethylidene)chroman-2,4-dione, C17H14N2O3S

  • Niko S. Radulović ORCID logo , Dragana M. Sejmanović , Milenko N. Ristić ORCID logo , Vidoslav S. Dekić ORCID logo , Biljana Krüger ORCID logo , Volker Kahlenberg ORCID logo and Marko V. Rodić ORCID logo EMAIL logo
Published/Copyright: June 21, 2022

Abstract

C17H14N2O3S, monoclinic, P21/c (no. 14), a = 9.8966(5) Å, b = 9.4360(4) Å, c = 16.7115(7) Å, β = 92.245(4)°, V = 1559.39(12) Å3, Z = 4, R gt(F) = 0.0358, wR ref(F 2) = 0.1013, T = 170 K.

CCDC no.: 2175731

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow irregular
Size: 0.53 × 0.46 × 0.26 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.22 mm−1
Diffractometer, scan mode: Gemini R ultra, ω
θ max, completeness: 26.4°, >99%
N(hkl)measured, N(hkl)unique, R int: 32946, 3188, 0.036
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2792
N(param)refined: 215
Programs: CrysAlisPRO [1], SHELX [2, 3], PLATON [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
S1 0.87812 (4) 0.67596 (4) 0.36715 (2) 0.04671 (14)
O1 0.43999 (11) 0.06147 (11) 0.66941 (5) 0.0505 (3)
O2 0.60654 (13) 0.20437 (14) 0.69839 (6) 0.0685 (4)
O3 0.39687 (11) 0.20110 (12) 0.43885 (6) 0.0552 (3)
N1 0.59360 (12) 0.36706 (13) 0.46404 (7) 0.0429 (3)
H1 0.5290 (18) 0.3197 (18) 0.4343 (11) 0.065(5)*
N2 0.67878 (12) 0.46785 (12) 0.43386 (7) 0.0444 (3)
C2 0.52581 (15) 0.16768 (15) 0.64641 (8) 0.0452 (3)
C3 0.51281 (13) 0.22073 (14) 0.56514 (7) 0.0391 (3)
C4 0.41183 (13) 0.16285 (14) 0.51051 (7) 0.0401 (3)
C4′ 0.32269 (13) 0.05342 (14) 0.54086 (8) 0.0405 (3)
C5 0.21898 (15) −0.00668 (17) 0.49305 (9) 0.0500 (3)
H5 0.204646 0.024035 0.439251 0.060*
C6 0.13748 (16) −0.11000 (18) 0.52334 (10) 0.0573 (4)
H6 0.066792 −0.150188 0.490601 0.069*
C7 0.15857 (17) −0.15553 (18) 0.60176 (11) 0.0592 (4)
H7 0.102092 −0.227134 0.622364 0.071*
C8 0.26002 (17) −0.09842 (17) 0.64997 (10) 0.0566 (4)
H8 0.274617 −0.130236 0.703544 0.068*
C8′ 0.34080 (14) 0.00667 (14) 0.61892 (8) 0.0433 (3)
C9 0.60231 (14) 0.32835 (14) 0.54005 (8) 0.0415 (3)
C10 0.70383 (18) 0.40300 (19) 0.59326 (10) 0.0635 (4)
H10A 0.777992 0.337998 0.607877 0.095*
H10B 0.660589 0.434974 0.641838 0.095*
H10C 0.739597 0.485039 0.565023 0.095*
C11 0.65823 (14) 0.49418 (15) 0.35937 (8) 0.0431 (3)
H11 0.588580 0.445543 0.329849 0.052*
C12 0.73950 (13) 0.59656 (14) 0.32004 (8) 0.0412 (3)
C13 0.72116 (15) 0.64599 (16) 0.24346 (8) 0.0480 (3)
H13 0.650260 0.615188 0.207619 0.058*
C14 0.81824 (16) 0.74708 (16) 0.22345 (9) 0.0512 (4)
H14 0.819254 0.791784 0.172536 0.061*
C15 0.91036 (15) 0.77500 (16) 0.28349 (9) 0.0475 (3)
C16 1.02682 (18) 0.8761 (2) 0.28408 (11) 0.0647 (4)
H16A 1.020505 0.935234 0.235864 0.097*
H16B 1.111840 0.822800 0.285089 0.097*
H16C 1.024386 0.936586 0.331686 0.097*

Source of material

The synthesis was performed according to the previously reported procedure [5]. The reaction of 3-acetyl-4-hydroxycoumarin with hydrazine hydrate gives a corresponding hydrazone. Condensation of the obtained hydrazone with 5-methylthiophene-2-carbaldehyde afforded the target compound 3-(1-(2-((5-methylthiophen-2-yl)methylene)hydrazinyl)ethylidene)chroman-2,4-dione. The obtained yellow solid was dissolved in acetone and allowed to slowly evaporate to form the crystals of the title compound.

Experimental details

Coordinates of carbon-bonded hydrogen atoms were introduced in idealized positions and refined using riding model. Their U iso values are aproximated as U iso = kU eq of the parent atom (k = 1.2 for sp 2 and 1.5 for sp 3 hybridized atoms).

Comment

Azines are compounds formed by the reaction of two different or the same carbonyl compounds (mostly aldehydes or ketones) with hydrazine [6, 7]. It is well known that they possess antibacterial [8], antifungal [9], anticonvulsant [10], anti-neuroinflammatory [11], anticancer [12], and antioxidant activities [13].

Coumarins are known to possess a wide spectrum of pharmacological activities, such as antimicrobial [14], antioxidant [15], anticancer [16], anti-inflammatory [17]. The coumarin core is a good scaffold for the synthesis of analogs with an aim to study and improve their biological properties. Prompted by all of the above mentioned we decided to contribute to the structural diversity of these compounds by preparing the unsymmetrical azine of the 3-substituted coumarin core and the heterocyclic aldehyde. In this paper, we present the crystal structure of this compound.

The asymmetric unit contains one molecule of 3-(1-(2-((5-methylthiophen-2-yl)methylene)hydrazinyl)ethylidene)chroman-2,4-dione. The whole molecule is quite planar, as the rms deviation of all non-hydrogen atoms from the mean plane amounts 0.075 Å. All bond lengths and angles are within the expected range, and are comparable to those found in the structurally related coumarin compound [18]. The molecular structures of the compound appear to be different in the crystalline state and solution, transformed one into another by virtue of prototropic tautomerism. According to NMR spectra [5], oxygen atom O3 is protonated, while a tautomer in which proton transfer from O3 to N1 occurred exists in the crystalline state. The location of the hydrogen atom H1 in the crystal structure is unequivocally confirmed by difference electron density map, and unrestrained refinement of H1.

The only classical hydrogen bond donor is involved in an intramolecular hydrogen bond N1—H1···O3 with the following parameters: d(D—H) = 0.911(18) Å, d(H···A) = 1.725(18) Å, d(D···A) = 2.5211(16) Å, α(D—H···A) = 144.2(16)°. It appears that the dominant intermolecular interaction is the stacking of molecules, the geometry of which can be described by following parameters: d(Cg1···Cg2 i ) = 3.6863(8) Å, δ(Ω1,Ω2) = 4.18(7)°, and d(Cg1···Cg3 i ) = 3.7641(8) Å, δ(Ω1,Ω3) = 3.70(6)°, where Cg1 is centroid of the five membered tiophene ring Ω1, Cg2 is centroid of the six-membered lactone ring Ω2, and Cg3 is centroid of the 10-membered coumarine ring Ω3; δ is dihedral angle between ring mean planes; symmetry operation (i): −x + 1, −y + 1, −z + 1.


Corresponding author: Marko V. Rodić, Faculty of Sciences, Trg Dositeja Obradovića, University of Novi Sad, 3 21000 Novi Sad, Serbia, E-mail:

Funding source: Ministry of Education, Science, and Technological Development of the Republic of Serbia, & Austria Federal Ministry of Education, Science and Research

Award Identifier / Grant number: 451-03-02141/2017-09/14, 14/2018

Funding source: The Ministry of Education, Science and Technological Development of the Republic of Serbia

Award Identifier / Grant number: 451-03-68/2022-14/200125

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia, & Austria Federal Ministry of Education, Science and Research (project No. 451-03-02141/2017-09/14; WTZ project No. SRB 14/2018); the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 451-03-68/2022-14/200125); the Faculty of Science and Mathematics, University of Priština in Kosovska Mitrovica (project No. IJ-0205).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CrysAlisPro Software System; Rigaku Corporation: Wroclaw, Poland, 2020.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Search in Google Scholar

5. Ristić, M., Radulović, N., Dekić, B., Dekić, V., Ristić, N., Stojanović-Radić, Z. Synthesis and spectral characterization of asymmetric azines containing a coumarin moiety: the discovery of new antimicrobial and antioxidant agents. Chem. Biodivers. 2019, 16, e1800486.10.1002/cbdv.201800486Search in Google Scholar PubMed

6. Safari, J., Gandomi-Ravandi, S. Structure, synthesis and application of azines: a historical perspective. RSC Adv. 2014, 4, 46224–46249; https://doi.org/10.1039/c4ra04870a.Search in Google Scholar

7. Chourasiya, S. S., Kathuria, D., Wani, A. A., Bharatam, P. V. Azines: synthesis, structure, electronic structure and their applications. Org. Biomol. Chem. 2019, 17, 8486–8521; https://doi.org/10.1039/c9ob01272a.Search in Google Scholar PubMed

8. Veena, K., Ramaiah, M., Shashikaladevi, K., Avinash, T. S., Vaidya, V. P. Synthesis and antimicrobial activity of asymmetrical azines derived from naphtho[2,1-b]furan. J. Chem. Pharmaceut. Res. 2011, 3, 130–135.Search in Google Scholar

9. Kurteva, V. B., Simeonov, S. P., Stoilova-Disheva, M. Symmetrical acyclic aryl aldazines with antibacterial and antifungal activity. Pharmacol. Pharm. 2011, 2, 1–9; https://doi.org/10.4236/pp.2011.21001.Search in Google Scholar

10. Gul, H. I., Calis, U., Vepsalainen, J. Synthesis of some mono–Mannich bases and corresponding azine derivatives and evaluation of their anticonvulsant activity. Arzneimittelforschung 2004, 54, 359–364; https://doi.org/10.1055/s-0031-1296984.Search in Google Scholar PubMed

11. Subedi, L., Kwon, O. W., Pak, C., Lee, G., Lee, K., Kim, H., Kim, S. Y. N,N-disubstituted azines attenuate LPS-mediated neuroinflammation in microglia and neuronal apoptosis via inhibiting MAPK signaling pathways. BMC Neurosci. 2017, 18, 82; https://doi.org/10.1186/s12868-017-0399-3.Search in Google Scholar PubMed PubMed Central

12. Liang, C., Xia, J., Lei, D., Li, X., Yao, Q., Gao, J. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis–Schiff base derivatives of isatin. Eur. J. Med. Chem. 2014, 74, 742–750; https://doi.org/10.1016/j.ejmech.2013.04.040.Search in Google Scholar PubMed

13. Li, D. Q., Tan, M. X., Jie, L. Synthesis, antioxidant and antibacterial activities of salicylaldehyde azine. Adv. Mater. Res. 2011, 396–398, 2366–2369; https://doi.org/10.4028/www.scientific.net/amr.396-398.2366.Search in Google Scholar

14. Al-Majedy, Y. K., Kadhum, A. A. H., Al-Amiery, A. A., Mohamad, A. B. Coumarins: the antimicrobial agents. Sys. Rev. Pharm. 2017, 8, 62–70.10.5530/srp.2017.1.11Search in Google Scholar

15. Bubols, G. B., Vianna, D. R., Medina-Remon, A., von Poser, G., Lamuela-Raventos, R. M., Eifler-Lima, V. L., Garcia, S. C. The antioxidant activity of coumarins and flavonoids. Mini Rev. Med. Chem. 2013, 13, 318–334; https://doi.org/10.2174/1389557511313030002.Search in Google Scholar

16. Kapoor, S. The anti-neoplastic effects of coumarin: an emerging concept. Cytotechnology 2013, 65, 787–788; https://doi.org/10.1007/s10616-013-9538-6.Search in Google Scholar PubMed PubMed Central

17. Bansal, Y., Sethi, P., Bansal, G. Coumarin: a potential nucleus for anti-inflammatory molecules. Med. Chem. Res. 2013, 22, 3049–3060; https://doi.org/10.1007/s00044-012-0321-6.Search in Google Scholar

18. Helliwell, M., Nasiopoulou, D. A., Harris, P. A., Kotali, A., Joule, J. A. N′-[1-(2,4–Dioxo-3,4-dihydro-2H-1-benzopyran-3-ylidene)ethyl] thiophene-2-carbohydrazide. Acta Crystallogr. 2011, E67, o1014; https://doi.org/10.1107/s1600536811010907.Search in Google Scholar PubMed PubMed Central

Received: 2022-05-01
Accepted: 2022-05-30
Published Online: 2022-06-21
Published in Print: 2022-10-26

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of 3-(1-(2-((5-methylthiophen-2-yl)methylene)hydrazinyl)ethylidene)chroman-2,4-dione, C17H14N2O3S
  4. Crystal structure of chlorido-(η 6-toluene)(5,5′-dimethyl-2,2′-bipyridine-κ2 N,N′)ruthenium(II) hexafluoridophosphate(V) ─ acetone (1/1) C22H26ClN2ORuPF6
  5. Crystal structure of 4-(((2-(3-(1-(3-(3-cyanophenyl)-6-oxopyridazin-1(6H)-yl)ethyl)phenyl) pyrimidin-5-yl)oxy)methyl)-1-methylpiperidin-1-ium chloride monohydrate, C30H33N6O2Cl
  6. The crystal structure of 2-chloro-N-((2-chlorophenyl)carbamoyl)nicotinamide, C13H9Cl2N3O2
  7. Crystal structure of 9-(t-butyl)-3,11-dihydro-6H-pyrazolo [1,5-a]pyrrolo[3′,2′:5,6]pyrido[4,3-d]pyrimidin-6-one hemihydrate, C30H32N10O3
  8. Crystal structure of di-μ2-hydroxido-tetrakis(6-methylpyridine-2-carboxylato-k2 N,O) diiron(III) trihydrate C28H32Fe2N4O13
  9. Crystal structure of catena-poly[qua-(μ2-2-aminoisophthalat-κ3 O,O′:O′′)(1,10-phenanthroline-κ2 N,N′)manganese(II)] C20H15MnN3O5
  10. Crystal structure of poly[(bis(isothiocyano)-bis(μ 2-(E)-N′-(pyridin-4-ylmethylene)isonicotinohydrazide))iron(II) – methanol – 1,4-dioxane (1/2/2), C36H44FeN10O8S2
  11. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl)propylidene)-4-hydroxybenzohydrazide, C16H15ClN2O3
  12. Crystal structure of bis(μ2-benzoato-k2O:O′)-bis(μ2-benzoato-k3O,O′:O′)dinitrato-k2O,O′-bis(phenanthroline-k2 N,N′)dierbium(III), C52H36Er2N6O14
  13. Crystal structure of 4-ethyl-2-{[(4-nitrophenyl)methyl]sulfanyl}-6-oxo-1,6-dihydropyrimidine-5-carbonitrile, C14H12N4O3S
  14. Synthesis and crystal structure of 1-((3R,10S,13R,17S)-10,13-dimethyl-3- (phenylamino)hexadecahydro-1H-cyclopenta[α] phenanthren-17-yl)ethan-1-one, C27H39NO
  15. Crystal structre of 1,4-bis(bromomethyl)-2,3,5,6-tetramethylbenzene, C12H16Br2
  16. Crystal structure of 2-(adamantan-1-yl)-5-(3,5-dinitrophenyl)-1,3,4-oxadiazole, C18H18N4O5
  17. Crystal structure of (E)-N′-benzylidene-4-nitrobenzohydrazide – methanol (1/1), C15H15N3O4
  18. The crystal structure of 3-(2-bromophenyl)-1,5-di-p-tolylpentane-1,5-dione, C25H23BrO2
  19. Crystal structure of catena-poly[(μ 2-4,4′-bipyridine-κ2 N:N′)-bis(4-bromobenzoato-κ1 O)zinc(II)], C24H16Br2N2O4Zn
  20. Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)zinc(II), C20H14N6ZnS4
  21. Crystal structure of pentacarbonyl-(μ2-propane-1,3-dithiolato-κ4 S:S,S′:S′)-(diphenyl(o-tolyl)phosphine-κ1 P)diiron (Fe-Fe), C27H23Fe2O5PS2
  22. The crystal structure of the cocrystal 4-hydroxy-3,5-dimethoxybenzoic acid–pyrazine-2-carboxamide(1/1), C14H15N3O6
  23. The crystal structure of dichlorido-bis((RS)-2-(4-chlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)hexanenitrile-κ1 N)zinc(II), C30H34Cl4N8Zn
  24. Crystal structure of the cocrystal 2,4,6-triamino-1,3,5-triazine – 1H-isoindole-1,3(2H)-dione – methanol (1/1/1), C12H15N7O3
  25. The crystal structure of methyl 4-((3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)methyl) benzoate, C23H28O3
  26. Crystal structure of (poly[µ2-(1H-pyrazol-1-yl)methyl]-1H-benzotriazole-κ 2 N:N)-(nitrato-κ 2 O:O′) silver(I), C9H8AgN7O3
  27. Crystal structure of tetraaqua-bis[4-(1H-1,2,4-triazol-1-yl)benzoato-k1 N]cadmium(II), C18H20CdN6O8
  28. The crystal structure of diaqua-bis(pyrazolo[1,5-a]pyrimidine-3-carboxylato-κ2N,O)nickel(II) dihydrate, C14H16N6O8Ni
  29. Crystal structure of poly[μ2-aqua-aqua-(μ2-1,3-di(1H-imidazol-1-yl)propane-κ2 N:N′)-(μ2-4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ2 O:O′)-(μ4-4,4′-(1H-1,2,4-triazole-3,5-diyl)dibenzoato-κ5 O,O′:O″:O′″:O′″)dicobalt(II)] – water – dimethylformamide (1/1/1) C44H43N11O12Co2
  30. Crystal structure of N-((Z)-amino(((E)-amino(phenylamino)methylene) amino)methylene)benzenaminium chloride – benzo[f]isoquinolino[3,4-b][1,8]naphthyridine – tetrahydrofurane (1/2/2), C60H54ClN11O2
  31. The crystal structure of Chrysosplenol D, C18H16O8
  32. Crystal structure of poly[deca aqua-bis(μ 4-2-(triazol-1-yl)-benzene-1,3,5-tricarboxylato)- bis(μ 5-2-(triazol-1-yl)-benzene-1,3-dicarboxylato-5-carboxyl acid) pentamanganese(II)] dihydrate, C44H42Mn5N12O36
  33. Synthesis and crystal structure of (E)-1-(4-(((E)-3-(tert-butyl)-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C20H24N2O2
  34. The crystal structure of 4,4′-dichloro-6,6′-dimethoxy-2,2′,3,3′,5,5′- hexanitroazobenzene, C14H6N8O14Cl2
  35. Crystal structure of N 2,N 4-dimesitylpentane-2,4-diamine, C23H34N2
  36. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ 6O6)potassium(2-methylphenylamino)ethyl-2-methylphenylamide ammoniate (1/3.5), [K(18-crown-6)](o-CH3C6H4)NH(CH2)2N(o-CH3C6H4) 3.5 NH3, C28H53.5KN5.5O6
  37. The crystal structure of N′,N″,2-tris((E)-5-chloro-2-hydroxybenzylidene)hydrazine-1-carbohydrazonhydrazide hydrochloride – methanol (1/3), C25H30Cl4N6O6
  38. Crystal structure of (E)-7-bromo-2-(3,5-dimethoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H17BrO3
  39. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)-4-hydroxybenzohydrazide, C15H13ClN2O3
  40. {2-(((2-aminoethyl)imino)methyl)-6-bromophenolato-κ3 N,N′,O}iron(III) nitrate, C18H20Br2FeN5O5
  41. Crystal structure of 2-(tert-pentyl)anthracene-9,10-dione, C19H18O2
  42. Crystal structure of 5,5′-(1,4-phenylene)bis(1H-imidazol-3-ium) bis(2-(2-(carboxymethyl)phenyl)acetate), C32H30N4O8
  43. Crystal structure of N 2,N 6-bis(2-(((E)-naphthalen-1-ylmethylene)amino)phenyl)pyridine-2,6-dicarboxamide, C41H29N5O2
  44. The crystal structure of 3-amino-1,2,4-triazolium 2,4,5-trinitroimidazolate, C5H5O6N9
  45. Hydrogen bonded dimers in the crystal structure of 2-chloro-N-(phenylcarbamoyl)nicotinamide, C26H20Cl2N6O4
  46. The crystal structure of 4,4′-bipyridine-5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one-water(1/2/2), C40H32N2O12
  47. Crystal structure of N,N'-bis(4-fluoro-salicylaldehyde)-3,6-dioxa-1,8-diaminooctane, C20H22F2N2O4
  48. Crystal structure of 3-(1,3-dinitropropan-2-yl)-4H-chromen-4-one, C12H10N2O6
  49. The crystal structure of (4-(2-bromoethoxy)-phenyl)(phenyl)methanone, C15H13BrO2
  50. Crystal structure of (E)-7-bromo-2-(4-methoxybenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C18H15BrO2
  51. Crystal structure of dichlorido-tetrakis((E)-(RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pent-1-en-3-ol-κ 1 N)cadmium(II), C60H68O4N12Cl10Cd
  52. Crystal structure of diaqua-diphenanthroline-κ2 N,N′-bis(μ2-2-carboxy-3,4,5,6-tetrafluorobenzoato-κ2 O:O′)-bis(μ2-tetrafluorophthalato-κ3 O,O′:O′)didysprosium(III) – phenanthroline (1/2), C80H38Dy2F16N8O18
  53. Crystal structure of bis(μ2-2-oxido-2-phenylacetato-κ3 O,O′:O′)-bis(N-oxido-benzamide-κ2 O,O′)-bis(propan-2-olato-κ1 O)dititanium(IV), C36H38N2O12Ti2
  54. Crystal structure of poly[diaqua-(μ2-1H-benzo[d][1,2,3]triazole-5-carboxylato-κ2 O:O′)(μ2-oxalato-κ4O,O:O″,O′″)europium(III)] monohydrate, C9H10N3O9Eu
  55. Crystal structure of bis((N-methyl-2-oxyethyl)amine)-bis(μ 2-N,N,N-tris(2-oxoethyl)amine)-bis(isopropoxy)-bis(μ 3-oxo)tetratitanium(IV)– isopropanol (1/2), C34H76N4O16Ti4
  56. Synthesis and crystal structure of ethyl 4-((4-iodobenzyl)amino)benzoate, C16H16INO2
  57. Crystal structure of (Z)-2-(tert-butyl)-5-((5-(tert- butyl)-2H-pyrrol-2-ylidene)(mesityl)methyl)-1H-pyrrole, C26H34N2
  58. Crystal structure of dimethylammonium poly[μ4-1,1′-(1,4- phenylenebis(methylene))bis(1H-pyrazole-3,5-dicarboxylato-κ6 N,O:O′:N′,O″:O‴) manganese(II)], C22H26MnN6O8
Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0225/html?srsltid=AfmBOopglDZ-yo-oJ3NkeJJc8cLv0vOmu9sTzP8T48-hfCMStRBe5XJE
Scroll to top button