Startseite Dimerization of 2-[(2-((2-aminophenyl)thio)phenyl)amino]-cyclohepta-2,4,6-trien-1-one through hydrogen bonding, C19H16N2OS
Artikel Open Access

Dimerization of 2-[(2-((2-aminophenyl)thio)phenyl)amino]-cyclohepta-2,4,6-trien-1-one through hydrogen bonding, C19H16N2OS

  • Anna Hanft und Crispin Lichtenberg ORCID logo EMAIL logo
Veröffentlicht/Copyright: 5. Mai 2020

Abstract

C19H16N2OS, triclinic, P1̄ (no. 2), a = 8.1510(3) Å, b = 8.8021(3) Å, c = 11.3953(5) Å, α = 72.546(2)°, β = 84.568(2)°, γ = 80.760(2)°, V = 768.86(5) Å3, Z = 2, Rgt(F) = 0.0491, wRref(F2) = 0.1494, T = 100 K.

CCDC no.: 1998662

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless plate
Size:0.21 × 0.16 × 0.04 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.22 mm−1
Diffractometer, scan mode:Bruker SMART APEX, φ and ω
θmax, completeness:28.0°, 99%
N(hkl)measured, N(hkl)unique, Rint:9366, 3619, 0.040
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2625
N(param)refined:220
Programs:Bruker [1], [2], SHELX [3], [4], Mercury [5], Olex2 [6]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.2649(3)0.9263(2)0.59895(19)0.0194(5)
C20.4020(3)0.8573(2)0.68386(19)0.0170(4)
C30.5422(3)0.7529(3)0.66942(19)0.0214(5)
H30.6127090.7215090.7345920.026*
C40.5961(3)0.6864(3)0.5733(2)0.0262(5)
H40.6964260.6177020.5841030.031*
C50.5225(3)0.7078(3)0.4652(2)0.0254(5)
H50.5803160.6547970.4111640.031*
C60.3712(3)0.7996(3)0.4269(2)0.0232(5)
H60.3404820.7979430.3507710.028*
C70.2605(3)0.8920(3)0.48436(19)0.0223(5)
H70.1656530.9412740.4411530.027*
C80.4611(3)0.8454(2)0.89677(19)0.0173(4)
C90.3829(2)0.7484(2)1.00027(19)0.0172(4)
C100.4672(3)0.6839(3)1.10903(19)0.0205(5)
H100.4162790.6188021.1781560.025*
C110.6259(3)0.7165(3)1.1144(2)0.0210(5)
H110.6824620.6718321.1866930.025*
C120.7015(3)0.8159(3)1.0120(2)0.0218(5)
H120.8074630.8395191.0164030.026*
C130.6186(3)0.8802(3)0.9025(2)0.0198(5)
H130.6692910.9462350.8337360.024*
C140.1056(3)0.6179(3)1.13132(19)0.0193(4)
C150.0507(2)0.7064(3)1.21541(19)0.0184(4)
C16−0.0269(3)0.6290(3)1.3276(2)0.0219(5)
H16−0.0625110.6849841.3849120.026*
C17−0.0509(3)0.4700(3)1.3539(2)0.0247(5)
H17−0.1049830.4211331.4280000.030*
C180.0044(3)0.3819(3)1.2714(2)0.0263(5)
H18−0.0097980.2742481.2904260.032*
C190.0811(3)0.4578(3)1.1605(2)0.0229(5)
H190.1170340.4004151.1041360.027*
H10.282(3)0.972(3)0.788(2)0.034(7)*
H2A0.100(3)0.914(3)1.109(3)0.041(8)*
H2B0.013(4)0.921(3)1.240(3)0.046(8)*
N10.3736(2)0.9092(2)0.78604(16)0.0194(4)
N20.0760(3)0.8639(2)1.1906(2)0.0247(4)
O10.14534(19)1.01392(19)0.63363(14)0.0271(4)
S10.18083(7)0.71275(7)0.98081(5)0.02337(18)

Comment

Aminotroponiminates (ATIs) are monoanionic ligands with applications in fields such as hydroamination and polymerization catalysis and the stabilization of low-valent main group species [7], [8], [9], [10], [11], [12]. Their potential to act as redox-active ligands has recently been demonstrated [13], [14], [15]. In the coordination chemistry of ATIs, it has been shown that not only their N,N′-binding pocket, but also their C7-ligand backbone can undergo directed bonding interactions with metal centers [16], [17], [18], [19]. Thus, ATIs can effectively act as ditopic, tridentate ligands. A strategy to further increase the denticity of this class of ligands is to connect two ATI ligands via linkers, generating so-called tropocoronands. These macrocyclic ligands have been employed for the chelation of metal atoms including Co, Ni, Cu, and Rh [20], [21], [22], [23], [24], [25], [26], [27], [28]. We became interested in tropocoronands containing unsaturated linker units. Reaction of 2,2′-thio-dianiline (1) with O-tosyltropone (2) in a 1.0:2.5 stoichiometry gave the title compound 2-((2-((2-aminophenyl)thio)phenyl)amino)-cyclohepta-2,4,6-trien-1-one (3) as the main product, which was isolated and fully characterized. The isolation of compound 3 shows that functionalization of the first N atom in 1 hampers functionalization of the second nitrogen atom in this substrate in the protocol that was employed. The asymmetric unit of the title compounds contains one formula unit of 3 (triclinic, P1̄, Z = 2, see the Figure). The three planar ring systems in 3 are twisted towards each other. The angle between the mean planes of the tropolone and the adjacent phenylene ring amounts to 68.3°. The angle between the mean planes of the two phenylene units is 76.3°. The C—N bond lengths in compound 3 suggest partial double bond character for C2—N1 [1.361(3) Å] and C15—N2 [1.374(3) Å], but not for C8—N1 [1.426(3) Å]. This demonstrates the stronger electron withdrawing character of the tropolon-2-yl unit compared to the phenylene unit in 3. The C—S bond lengths are identical within limits of error and virtually identical to those in the free 2,2′-thiodianiline substituent [1.772(2) Å] [7], [8], [9], [10], [11], [12], [29] In the solid state, the title compound is linked via two N—H⋯O hydrogen bonds, forming dimers with Ci symmetry (see the Figure). In this scenario, O1 acts as a H-bond acceptor, while H2B represents the H-bond donor. Overall, this leads to a so-called R22(22) motif, i.e. a ring strucutre formed by 22 atoms including two hydrogen bond donors and two hydrogen bond acceptors [30]. Using the C7H5ONH fragment, 15 structures of 2-(amino)tropones can be found in the Cambride Structural Database [31]. The majority of these compounds form dimers in the solid state through N—H⋯O hydrogen bonding [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42]. In comparison to the title compound, all of these dimers form R22(10) motifs, i.e. the rings generated through hydrogen bonding are significantly smaller. In addition, two examples of hydrogen-bonded coordination polymers and two monomeric species have been reported in the literature [14], [43], [44], [45].

Source of material

Ethanol (30 mL) was added to a mixture of 2,2′-thio-dianiline (1) (157 mg, 0.726 mmol) and O-tosyltropone (2) (500 mg, 1.81 mmol). The reaction mixture was heated under reflux for 3 d. Aqueous sodium hydroxide (2 M, 20 mL) and CH2Cl2 (20 mL) were added, the aqueous phase was separated and extracted with CH2Cl2 (2 × 10 mL). The combined organic phases were dried over Na2CO3 and all volatiles were removed in vacuo. The crude reaction product was purified by column chromatography (Hexan/Ethyl acetate 5:1). The product was obtained as colourless crystals. Yield: 70 mg, 0.220 mmol, 30%.

The atom labeling used for the NMR spectroscopic characterization is the same as the atom labeling in the single crystal X-ray structure analysis.

1H-NMR (500 MHz, CDCl3): δ = 6.72 (td, 1H, 3JHH = 7.50 Hz, 4JHH = 1.29 Hz, 18-H), 6.72 (dd, 1H, 3JHH = 8.10 Hz, 4JHH = 1.35 Hz, 16-H), 6.78 (m, 1H, 5-H), 6.85 (dd, 1H, 3JHH = 10.3 Hz, 4JHH = 0.52 Hz, 3-H), 6.96 (dd, 1H, 3JHH = 7.95 Hz, 4JHH = 1.42 Hz, 10-H), 7.11 (m, 1H, 4-H), 7.14 (m, 1H, 11-H), 7.20 (m, 1H, 17-H), 7.22 (m, 1H, 12-H), 7.32 (m, 3H, 6-H, 7-H, 13-H) 7.36 (dd, 3JHH = 7.7 Hz, 4JHH = 1.5 Hz, 19-H), 8.69 (br. s, 1H, NH) ppm.

13C-NMR (125 MHz, CDCl3): δ = 110.83 (s, 3-C), 113.31 (s, 14-C), 115.66 (s, 16-C), 119.15 (s, 18-C), 124.84 (s, 5-C), 126.33 (s, 13-C), 126.63 (s, 12-C), 127.46 (s, 11-C), 128.19 (s, 10-C), 131.09 (s, 7-C), 131.38 (s, 17-C), 134.45 (s, 9-C), 135.58 (s, 8-C), 136.05 (s, 4-C), 137.42 (s, 19-C), 137.60 (s, 6-C), 149.09 (s, 15-C), 153.96 (s, 2-C), 177.17 (s, 1-C) ppm.

Anal. calc. for C19H16N2OS (320.41 g/mol): C, 71.22; H, 5.03; N, 8.74; found: C, 70.99; H, 4.95; N, 8.61.

m. p.: 175 °C.

Experimental details

The Uiso values of H atoms were set to 1.2 * Ueq of the parent atoms. Coordinates of hydrogen atoms bound to N were refined without any constraints or restraints. All other hydrogen atoms were refined with riding coordinates.

Acknowledgements

The authors thank Prof. Holger Braunschweig for constant support and the Fonds der Chemischen Industrie (Liebig scholarship to C. L.), the DFG, and the University of Würzburg for generous financial support. This publication was supported by the Open Access Publication Fund of the University of Würzburg.

References

1. Bruker. APEX2 ver. 2014.9. Bruker AXS GmbH, Karlsruhe, Germany (2014).Suche in Google Scholar

2. Bruker. SAINT+ ver. 8.38A. Bruker AXS GmbH, Karlsruhe, Germany (2019).Suche in Google Scholar

3. Sheldrick, G.: SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. A71 (2015) 3–8.10.1107/S2053273314026370Suche in Google Scholar

4. Sheldrick, G.: Crystal structure refinement with SHELXL. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Suche in Google Scholar

5. Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A.: Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 53 (2020) 226–235.10.1107/S1600576719014092Suche in Google Scholar

6. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.: OLEX2: a complete structrue solution, refinement and analysis program. J. Appl. Crystallogr. 42 (2009) 339–241.10.1107/S0021889808042726Suche in Google Scholar

7. Hanft, A.; Lichtenberg, C.: New perspectives for aminotroponiminates: coordination chemistry, redox behavior, cooperativity, and catalysis. Eur. J. Inorg. Chem. 2018 (2018) 3361–3373.10.1002/ejic.201800465Suche in Google Scholar

8. Roesky, P. W.: The coordination chemistry of aminotroponiminates. Chem. Soc. Rev. 29 (2000) 335–345.10.1039/a906763iSuche in Google Scholar

9. Roesky, P. W.: Bulky amido ligands in rare earth chemistry – syntheses, structures, and catalysis. Z. Anorg. Allg. Chem. 629 (2003) 1881–1894.10.1002/zaac.200300240Suche in Google Scholar

10. Dias, H. V. R.; Wang, Z.; Jin, W.: Aminotroponiminato complexes of silicon, germanium, tin and lead. Coord. Chem. Rev. 176 (1998) 67–86.10.1016/S0010-8545(98)00112-XSuche in Google Scholar

11. Kuehl, O.: N-heterocyclic germylenes and related compounds. Coord. Chem. Rev. 248 (2004) 411–427.10.1016/j.ccr.2003.12.004Suche in Google Scholar

12. Jenter, J.; Luhl, A.; Roesky, P. W.; Blechert, S.: Aminotroponiminate zinc complexes as catalysts for the intramolecular hydroamination. J. Organomet. Chem. 696 (2011) 406–418.10.1016/j.jorganchem.2010.10.017Suche in Google Scholar

13. Lichtenberg, C.; Krummenacher, I.: Aminotroponiminates as tunable, redox-active ligands: reversible single electron transfer and reductive dimerisation. Chem. Commun. 52 (2016) 10044–10046.10.1039/C6CC05762DSuche in Google Scholar PubMed

14. Hanft, A.; Lichtenberg, C.: Aminotroponiminates: ligand-centred, reversible redox events under oxidative conditions in sodium and bismuth complexes: Dalton Trans. 47 (2018) 10578–10589.10.1039/C8DT01019FSuche in Google Scholar

15. Hanft, A.; Krummenacher, I.; Lichtenberg, C.: Alkali-metal aminotroponiminates: selectivities and equilibria in reversible radical coupling of delocalized π-electron systems. Chem. Eur. J. 25 (2019) 11883–11891.10.1002/chem.201901962Suche in Google Scholar PubMed

16. Lichtenberg, C.: Aminotroponiminates: alkali metal compounds reveal unprecedented coordination modes. Organometallics 35 (2016) 874–902.10.1021/acs.organomet.6b00042Suche in Google Scholar

17. Hanft, A.; Lichtenberg, C.: Rationalizing the effect of ligand substitution patterns on coordination and reactivity of alkali metal aminotroponiminates. Organometallics 37 (2018) 1781–1787.10.1021/acs.organomet.8b00208Suche in Google Scholar

18. Hanft, A.; Jürgensen, M.; Bertermann, R.; Lichtenberg, C.: Sodium aminotroponiminates: ligand-induced disproportionation, mixed-metal compounds, and exceptional activity in polymerization catalysis. ChemCatChem 10 (2018) 4018–4027.10.1002/cctc.201800580Suche in Google Scholar

19. Pittracher, M.; Frisch, U.; Kopacka, H.; Wurst, K.; Müller, T.; Oehninger, L.; Ott, I.; Wuttke, E.; Scheerer, S.; Winter, R. F.; Bildstein, B.: π-Complexes of tropolone and its N-derivatives: ambidentate [O,O]/[N,O]/[N,N]-cycloheptatrienyl pentamethylcyclopentadienyl ruthenium sandwich complexes. Organometallics 33 (2014) 1630–1643.10.1021/om401200tSuche in Google Scholar

20. Jaynes, S.; Doerrer, L. H.; Liu, S.; Lippard, S. J.: Synthesis, tuning of the stereochemistry, and physical properties of cobalt(II) tropocoronand complexes. Inorg. Chem. 34 (1995) 5735–5744.10.1021/ic00127a010Suche in Google Scholar

21. Davis, M.; Roberts, M. M.; Zask, A.; Nakanishi, K.; Nozoe, T.; Lippard, S. J.: Stereochemical and electronic spin state tuning of the metal center in the nickel(II)tropocoronands. J. Am. Chem. Soc. 107 (1985) 3864–3870.10.1021/ja00299a018Suche in Google Scholar

22. Davis, M.; Zask, A.; Nakanishi, K.; Lippard, S. J.: Copper(II) tropocoronands: synthesis, structure, and properties of mononuclear complexes. Inorg. Chem. 24 (1985) 3737–3743.10.1021/ic00217a009Suche in Google Scholar

23. Villacorte, M.; Gibson, D.; Williams, I. D.; Lippard, S. J.: Dicopper(I)tropocoronands: synthesis, X-ray crystal structure, and spectral properties of neutral binuclear copper(I) complexes bridged by symmetrically substituted alkynes. J. Am. Chem. Soc. 107 (1985) 6732–6734.10.1021/ja00309a064Suche in Google Scholar

24. Kozhukh, J.; Minier, M. A.; Lippard, S. J.: Synthesis and characterization of mononuclear, pseudotetrahedral cobalt(III) compounds. Inorg. Chem. 54 (2015) 418–424.10.1021/ic5009279Suche in Google Scholar PubMed PubMed Central

25. Hopmann, K. H.; Conradie, J.; Zangen, E.; Tonzetich, Z. J.; Lippard, S. J.: Singlet-triplet gaps of cobalt nitrosyls: insights from tropocoronand complexes. Inorg. Chem. 54 (2015) 7362–7367.10.1021/acs.inorgchem.5b00901Suche in Google Scholar PubMed

26. Davis, M.; Lippard, S. J.: Tropocoronands as binucleating ligands. synthesis, structure, and properties of a (μ-acetato)(μ-methoxo)dicopper(II) derivative. Inorg. Chem. 24 (1985) 3688–3691.10.1021/ic00216a043Suche in Google Scholar

27. Jaynes, S.; Ren, T.; Masschelein, A.; Lippard, S. J.: Stereochemical control of reactivity in Co(III) alkyl complexes of the tropocoronand ligand system. J. Am. Chem. Soc. 115 (1993) 5589–5599.10.1021/ja00066a027Suche in Google Scholar

28. Shindo, K.; Wakabayashi, H.; Kurihara, T.; Zhang, L.-C.; Ebata, K.; Sakurai, H.; Nozoe, T.: Synthesis and crystal structure of tristropocryptands. J. Chin. Chem. Soc. 50 (2003) 47–50.10.1002/jccs.200300006Suche in Google Scholar

29. Yuan, Y.-Q.; Guo, S.-R.; Wang, L.-J.: Crystal structure of 2,2′-diaminodiphenyl sulfide, C12H12N2S. Z. Kristallogr. NCS 223 (2008) 507–508.10.1524/ncrs.2008.0223Suche in Google Scholar

30. Etter, M. C.; MacDonald, J. C.; Bernstein, J.: Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr. B46 (1990) 256–262.10.1107/S0108768189012929Suche in Google Scholar PubMed

31. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C.: The Cambridge Structural Database. Acta Crystallogr. B72 (2016) 171–179.10.1016/B978-0-12-409547-2.02529-4Suche in Google Scholar

32. Roesky, P. W.; Bürgstein, M. R.: Bridged aminotroponiminate complexes of the lanthanides. Inorg. Chem. 38 (1999) 5629–5632. (LIGVOM).10.1021/ic990533cSuche in Google Scholar PubMed

33. Dwivedi, A. D.; Binnani, C.; Tyagi, D.; Rawat, K. S.; Li, P.-Z.; Zhao, Y.; Mobin, S. M.; Pathak, B.; Singh, S. K.: Troponate/aminotroponate ruthenium-arene complexes: synthesis, structure, and ligand-tuned mechanistic pathway for direct C-H bond arylation with aryl chlorides in water. Inorg. Chem. 55 (2016) 6739–6749. (OTIMUB).10.1021/acs.inorgchem.6b01028Suche in Google Scholar PubMed

34. Barret, M. C.; Bhatia, P. H.; Kociok-Köhn, G.; Molloy, K. C.: New copper(II) 2-(alkylamino)troponates. Transition Met. Chem. 39 (2014) 543–551. (NOPRUH).10.1007/s11243-014-9830-0Suche in Google Scholar

35. Nishinaga, T.; Aono, T.; Isomura, E.; Watanabe, S.; Miyake, Y.; Miyazaki, A.; Enoki, T.; Miyasaka, H.; Otani, H.; Iyoda, M.: Structural, electronic and magnetic properties of Cu(II) complexes of 2-substituted tropones bearing a ferrocenyl group at 5-position. Dalton Trans. 39 (2010) 2293–2300. (FULHIE).10.1039/b912255aSuche in Google Scholar

36. Hicks, F. A.; Brookhart, M.: A highly active anilinotropone-based neutral nickel(II) catalyst for ethylene polymerization. Organometallics 20 (2001) 3217–3219. (MIXLOU).10.1021/om010211sSuche in Google Scholar

37. Steyl, G.: 2-(4-Flouroanilino)tropone. Acta Crystallogr. E63 (2007) o4353. (SIMQAH).10.1107/S1600536807050271Suche in Google Scholar

38. Ito, Y.; Amimoto, K.; Kawato, T.: Prototropic tautomerism and solid-state photochromism of N-phenyl-2-aminotropones. Dyes Pigments 89 (2011) 319–323. (SAPLOM).10.1016/j.dyepig.2010.06.001Suche in Google Scholar

39. Kubo, K.; Matsumoto, T.; Ideta, K.; Mori, A.: Crystal structures of 3-methylpyrrolo[2,3-b]tropone and its copper(II) complex. Heterocycles 90 (2015) 104–107. (KUHSIR).10.3987/COM-14-S(K)17Suche in Google Scholar

40. Kubo, K.; Tsujimoto, T.; Mori, A.: 3-Phenylpyrrolo[2,3-b]tropone. Acta Crystallogr. E57 (2001) o225–o227. (HUFTUX).10.1107/S1600536801002021Suche in Google Scholar

41. Kubo, K.; Tsujimoto, T.; Kato, N.; Mori, A.: 2,3-Cyclohexanopyrrolo[2,3-b]tropone. Acta Crystallogr. E57 (2001) o370–o371. (QIBMUJ).10.1107/S1600536801005001Suche in Google Scholar

42. Wahlström, N.; Stensland, B.; Bergman, J.: Synthesis of the marine alkaloid caulersin. Tetrahedron 60 (2004) 2147–2153. (ITIJIE).10.1016/j.tet.2003.12.046Suche in Google Scholar

43. Jansen van Vuuren, L.; Visser, H. G.; Schutte-Smith, M.: Crystal structure of 2-(methylamino)tropone. Acta Crystallogr. E75 (2019) 1128–1132. (WOLQUM).10.1107/S2056989019009502Suche in Google Scholar PubMed PubMed Central

44. Huczyński, A.; Majcher, U.; Maj, E.; Wietrzyk, J.; Janczak, J.; Moshari, M.; Tuszynski, J. A.; Bartl, F.: Synthesis, antiproliferative activity and molecular docking of Colchicine derivatives. Bioorg. Chem. 64 (2016) 103–112. (XAJCOD).10.1016/j.bioorg.2016.01.002Suche in Google Scholar PubMed

45. Siwatch, R. K.; Kundu, S.; Kumar, D.; Nagendran, S.: Bulky aminotroponiminate-stabilized germylene monochloride and its alkyne derivatives. Organometallics 30 (2011) 1998–2005. (OZINUH).10.1021/om200035zSuche in Google Scholar

Received: 2020-03-05
Accepted: 2020-04-23
Published Online: 2020-05-05
Published in Print: 2020-06-25

©2020 Anna Hanft et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Artikel in diesem Heft

  1. Frontmatter
  2. Crystal structure of bis [1-(phenylsulfonyl)-2-(1-(pyrazin-2-yl)ethylidene)hydrazin-1-ido-κ3N,N′,O]cobalt(II), C24H22N8O4S2Co
  3. The crystal structure of 1,3-bis(4-(methoxycarbonyl)benzyl)-2-methyl-1H-benzo[d]imidazol-3-ium bromide, C26H25BrN2O4
  4. Crystal structure of {tris((1H-benzo[d]imidazol-2-yl)methyl)amine-κ4N,N′,N′′,N′′′}-(nitrito-κ2O,O′)nickel(II) perchlorate – ethanol (1/1), C26H27ClN8NiO7
  5. Crystal structure of catena-poly[aqua[(μ2-4,5-dicarboxylato-2-(2-carboxylatophenyl)imidazol-1-ido-κ4N,O,O′:N′)](μ2-4,4′-bipyridine-κ2N:N′)dicopper(II)], C22H14Cu2N4O7
  6. Crystal structure of chlorido-tris(4-methylbenzyl-κC)-(triphenylarsine oxide-κO)tin(IV), C42H42AsClOSn
  7. The crystal structure of 4,4′-bipyridinium bis(3-carboxy-2-nitrobenzoate) tetrahydrate, C13H13N2O8
  8. Crystal structure of 1-(3-chlorophenyl)-4-(4-(((2,3-dihydro-1H-inden-5-yl)oxy)methyl)phenethyl)piperazine, C28H31ClN2O
  9. Crystal structure of catena-poly[diaqua-bis(μ2-5,5′-(1H-imidazole-4,5-diyl)bis(tetrazol-2-ido)-κ4N,N′:N′′,N′′′)magnesium], C10H8N20O2Mg
  10. The crystal structure of (E)-2-((2-hydroxy-4-ethoxybenzylidene)amino)-2-methylpropane-1,3-diol monohydrate, C13H21NO5
  11. Crystal structure of catena-poly[diaqua-(μ2-bipyridine-κ2N:N′)-bis(3,5-dichloroisonicotinato-κO)cadmium(II)] dihydrate, C22H20CdCl4N4O8
  12. The crystal structure of 4-(4-chlorophenyl)cyclohexane-1-carboxylic acid, C13H15ClO2
  13. Redetermination of the crystal structure of yttrium(III) trinitrate(V) pentahydrate, Y(NO3)3 ⋅ 5 H2O, H10N3O14Y
  14. Crystal structure of catena-poly[di-μ2-chlorido-1,10-phenanthroline-κ2N,N′-cadmium(II)], C12H8Cl2CdN2
  15. Crystal structure of 4-((2-methyl-6-(trifluoromethyl)pyrimidin-4-yl)oxy)benzoic acid, C13H9F3N2O3
  16. Crystal structure of 3-acetyl-4-hydroxybenzoic acid, C18H16O8
  17. Crystal structure of bis(N,2-bis(4-ethoxybenzylidene)hydrazine-1-carbohydrazonothioato-κ2N,S)nickel(II) — N,N-dimethylformamide (1/2), C44H56N10S2O6Ni
  18. The crystal structure of 5-chloro-4,6-dimethoxypyrimidin-2-amine, C6H8ClN3O2
  19. Crystal structure of poly[aqua-(μ4-benzene-1,2,4,5-tetracarboxylato-κ4O,O′,O′′,O′′′)bis(μ2-1-(4-(1H-imidazol-1-yl)benzyl)-1H-1,2,4-triazole-κ2N:N)dinickel(II)], NiC17H14N5O5
  20. Crystal structure of poly[aqua(5-dimethylamino)naphthalene-1-sulfonato-κ2N:O)(μ2-4,4′-bipyridyl -κ2N:N′)silver(I)], C44H44Ag2N6O8S2
  21. Crystal structure of 1-[3-(trifluoromethyl)cinnamoyl]-3-(pyridin-2-yl-κN)pyrazole-κ2N-bis(2-phenylpyridinato-k2C,N)iridium(III) hexafluorophosphate complex, [C40H28F3IrN5O]PF6
  22. Crystal structure of catena-poly[aqua(μ6-piperazine-1,4-bisethanesulfonato-κ6N:N′:O:O′:O′′:O′′′)(μ2-pyrazinyl-κ2N:N′)disilver(I)sesquihydrate], C12H30Ag2N4O11S2
  23. Crystal structure of (E)-1-(2-nitrophenyl)-N-(o-tolyl)methanimine, C14H12N2O2
  24. Crystal structure of 4′-amino-3′,5′-diisopropyl-(1,1′-biphenyl)-4-carbonitrile, C19H22N2
  25. The crystal structure of poly[bis(N,N-dimethylformamide-κ1O)-tetrakis(μ2-cyanido-κ2C:N)dinickel(II)], C10H14N6O2Ni2
  26. Crystal structure of rac-trans-N,N′-bis(3-bromo-5-chlorosalicylidene)-1,2-cyclohexanediamine, C20H18Br2Cl2N2O2
  27. Crystal structure of rac-trans-N,N′-bis(3,5-dibromosalicylidene)-1,2-cyclohexanediamine, C20H18Br4N2O2
  28. The crystal structure of (dichromato-κ2O,O′)bis(1,10-phenanthroline-κ2N,N′)nickel(II), C12H16N4O7Cr2Ni
  29. The crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium tetrachloridozincate(II) monohydrate, C10H18Cl4ZnN2O
  30. Crystal structure of bis(μ2-azido-k2N,N)-bis(2-amino-1-(N-(3-bromosalicylaldiminato))ethane)-dicopper(II), C20H18Br4N2O2
  31. Crystal structure of (η6-1-methyl-4-isopropylbenzene)-[5-bromo-2-(2-pyridyl)phenyl-κ2C,N]-chloro-ruthenium(II), C21H21BrClNRu
  32. Crystal structure of N-(methyl(oxo)(1-(6-(trifluoromethyl)pyridin-3-yl)ethyl)-λ6-sulfanylidene)cyanamide, C10H10F3N3OS
  33. Crystal structure of 6,6′-((cyclohexane-1,2-diylbis(azanylylidene))bis(methanylylidene))bis(2-bromo-4-chlorophenolato-κ4N,N′,O,O′)nickel(II), C20H16Br2Cl2NiN2O2
  34. Redetermination of the crystal structure of catena-poly[aqua-(1,10-phenanthroline-κ2N,N′)-(μ2-tetraoxidomolybdato(VI)-κ2O:O′)manganese(II) monohydrate, C12H12N2O6MoMn
  35. The crystal structure tetrakis(μ2-o-chlorobenzoato-κ2O:O′)-bis(methanol-κ1O)dirhodium(II), C30H24Cl4O10Rh2
  36. Crystal structure of bis(2,3-diphenyltetrazolidine-5-thione-κ1S)-(nitrato-κ1O)-(nitrato-κ2O,O′)lead(II), C26H20N10O6S2Pb
  37. Crystal structure of bis(3-bromo-N-(1-(3-methylpyrazin-2-yl)ethylidene)benzohydrazonato-κ3O,N,N′)cadmium(II) hemihydrate, C28H25N8O2.5Br2Cd
  38. Crystal structure of catena-poly[tetrakis(μ2-trifluoroacetato-κ2O:O′)(μ2-2,5-dimethylpyrazine-κ2N,N′)dicopper(II)], C7H4CuF6NO4
  39. The crystal structure of catena-poly[bis[3-azoniapentane-1,5-diammonium][bis(μ4-oxo)-tetrakis(μ3-oxo)-heptakis(μ2-oxo)-tetradecaoxo-octa-molybdenum] dihydrate], (C8H36N6O29Mo8)n
  40. Crystal structure of tetraaqua-bis(2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κO)-nickel(II)—diaqua-bis(2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-nickel(II), C28H24Cl12N4Ni2O18
  41. The crystal structure of bis(2-hydroxypyrimidinium) pentachloridobismuthate(III), (C4N2H5O)2BiCl5
  42. The crystal structure of catena-poly[(μ2-4,4′-dipyridine-κ2N,N′)-bis(3,5,6-trichloropyridine-2-oxyacetato-κO)-bis(ethanol-κO)nickel(II)], C28H26Cl6N4NiO8
  43. Crystal structure and anti-inflammatory activity of (3E,5E)-1-((4-chlorophenyl)sulfonyl)-3,5-bis(4-fluorobenzylidene)piperidin-4-one-dichloromethane (1/1), C26H20Cl3F2NO3S
  44. The crystal structure of 5-bromopicolinic acid monohydrate, C6H6BrNO3
  45. The crystal structure of 2-(3-(4-bromophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-8H-indeno[1,2-d]thiazole, C25H17BrFN3S
  46. The crystal structure of catena-poly[(μ2-2-((3-bromo-2-oxidobenzylidene)amino)acetato-κ4O,N,O′:O′′)-(dimethylformamide-κ1O)]zinc(II), C12H13N2O4BrZn
  47. Crystal structure of aqua-azido-κ1N-(6,6′-((propane-1,3-diylbis(azanylylidene))bis(methanylylidene))bis(3-bromophenolato)-κ4N,N′,O,O′iron(III), C17H16Br2FeN5O3
  48. The crystal structure of tris(1-ethylimidazole-κ1N)-(sulfato-κ2O,O′)vanadium(IV), C15H24N6O5SV
  49. Crystal structure of (E)-3-methoxy-N′-(1-(pyridin-2-yl)ethylidene)benzohydrazide, C15H15N3O2
  50. Crystal structure of dichloro-bis-(1-butyl-1H-benzo[d]imidazole)-nickel(II), C22H28Cl2N4Ni
  51. The crystal structure of 2-(2,3-dimethoxyphenyl)-3-hydroxy-4H-chromen-4-one, C17H14O5
  52. The crystal structure of 5-(2-(4-fluorophenyl)hydrazono)-4-methyl-2-((3-(5-methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)methylene) hydrazono)-2,5-dihydrothiazole dimethylformamide monosolvate, C30H25FN10S⋅C3H7NO
  53. The crystal structure of 1,8-bis(pyridin-4-ylethynyl)anthracene-1,2,4,5-tetrafluoro-3,6-diiodobenzene (2/1), C62H32F4I2N4
  54. The crystal structure of 3,6-di-tert-butyl-1,8-diiodo-9-methyl-9H-carbazole, C21H25I2N
  55. The crystal structure of 8-((4-chlorophenylamino)methylene)-6,10-dioxaspiro[4.5]decane-7,9-dione, C15H14ClNO4
  56. The crystal structure of catena-poly[oktaaqua-bis(μ2-4,4′-ethene-1,2-diyldipyridine-κ2N:N′)-(μ2-3,3′-(1-oxidodiazene-1,2-diyl)diphthalato-κ2O:O′)dicobalt(II)] dihydrate, C28H36N4O19Co2
  57. Crystal structure of (E)-1-(2-cyano-3-oxo-1-phenylprop-1-en-1-yl)-3,7-diphenylindolizine-6-carbonitrile, C31H19N3O
  58. Crystal structure of 1,1′-bis(diphenylphosphino)ferrocene-(1,1′-bis(diphenylphosphino)ferrocene-κ2P,P′)-(O-isobutyl sulfurodithioito-κ2S,S′)copper(I), C39H37CuFeOP2S2
  59. Crystal structure of poly[(5-bimethylamino-1-naphthalenesulfonato-κO)-(μ3-hexamethylenetetramino-κ3N:N′:N′′)silver(I)] dihydrate, C36H52Ag2N10O8S2
  60. Crystal structure of poly[μ2-diaqua-(μ2-2-amino-4,5-dicyano-κ2N:N′-imidazol-1-ide)sodium(I)], C5H6N5O2Na
  61. Crystal structure of (1,3-propanediamine-κ2N,N′)(N-(3-aminopropyl)-α-methyl aspartato-κ4N,N′,O,O′)cobalt(III) chloride, C11H24ClCoN4O4
  62. Crystal structure and anti-inflammatory activity of (3E,5E)-3,5-bis(4-fluorobenzylidene)-1-((4-fluorophenyl)sulfonyl)piperidin-4-one-dichloromethane (1/1), C26H20Cl2F3NO3S
  63. Crystal structure of (S)-(+)-1-cyclohexylethylaminium chloride, C8H18NCl
  64. The crystal structure of tris(nitrato-κ2O,O′)-bis(4,4,5,5-tetramethyl-2-(o-pyridyl)imidazoline-1-oxyl 3-oxide-κ2N,O)yttrium(III), C24H32N9O13Y
  65. Hydrogen bonding versus packing effects in the crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium tetraiodidozincate(II), C10H16I4ZnN2
  66. Dimerization of 2-[(2-((2-aminophenyl)thio)phenyl)amino]-cyclohepta-2,4,6-trien-1-one through hydrogen bonding, C19H16N2OS
  67. Crystal structure of 1-(4-chloro-phenyl)-7-ethoxyl-6,8-difluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid, C18H12ClF2NO4
  68. Crystal structure of 7-ethoxy-6,8-difluoro-4-oxo-1-pyridin-2-ylmethyl-1,4-dihydro-quinoline-3-carboxylic acid, C18H14F2N2O4
  69. Crystal structure of octahydro-7aR,8′R-dimethylspiro[isobenzofuran-4(1H), 4′ (3′H)-[1H-7,9a]methanocyclohepta[c]pyran]-1′,3, 9′ (3aH,4′aH)-trione, C20H26O5
  70. Crystal structure of bis(5-ethoxy-2-(((1-hydroxy-2-methyl-3-oxidopropan-2-yl)imino)methyl)phenolato-κ3N,O,O’)manganese(IV) – methanol (1/1), C27H38MnN2O9
  71. Crystal structure of 8a,8a′′-oxybis(8aH-8,9-dioxa-3a1λ4-aza-8aλ4-borabenzo[fg]tetracene), C34H22B2N2O5
  72. Crystal structure of bromido-triphenyl-(triphenylarsine oxide-κO)tin(IV), C36H30AsBrOSn
  73. Crystal structure of catena-poly[chlorido-(μ2-formato-κ2O:O′)-(1,10-phenathroline-κ2N,N′)copper(II)], C26H18Cl2Cu2N4O4
  74. The crystal structure of poly[(μ10-5-carboxyisophthalato-κ10O)disodium], C9H4Na2O6
  75. The crystal structure of 3,5-difluoroisonicotinic acid, C6H3F2NO2
  76. The crystal structure of ethyl-1-(N-(adamantan-1-yl)-carbamothioyl)piperidine-4-carboxylate, C19H30N2O2S
  77. Crystal structure of 5-methyl-3-phenyl-1-tosyl-1,2,3,4-tetrahydropyridine, C19H21NO2S
  78. Crystal structure of bis((3-chlorosalicylidene)-ethylenediaminato-κ4N,N′,O,O′)nickel (II), C16H12Cl2NiN2O2
  79. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-4-hydroxybenzohydrazide — dihydrofuran-2(3H)-one (1/1), C18H17ClN2O5
  80. Crystal structure of bis((3-bromosalicylidene)-ethylenediaminato-κ4N,N′,O,O′) nickel (II), C16H12Br2NiN2O2
  81. Crystal structure of trimethylsulfoxonium tetrachloridocobaltate(II) [(CH3)3SO]2CoCl4
Heruntergeladen am 11.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2020-0124/html?lang=de
Button zum nach oben scrollen