Startseite Crystal structure of dichlorido(N-o-tolyl-1,1-di-p-tolylphosphanamine–κ1P)-(methoxydi-p-tolylphosphane-κ1P)palladium(II), C36H39Cl2NOP2Pd
Artikel Open Access

Crystal structure of dichlorido(N-o-tolyl-1,1-di-p-tolylphosphanamine–κ1P)-(methoxydi-p-tolylphosphane-κ1P)palladium(II), C36H39Cl2NOP2Pd

  • Dumisani V. Kama ORCID logo EMAIL logo , Alice Brink und Andreas Roodt
Veröffentlicht/Copyright: 2. November 2019

Abstract

C36H39Cl2NOP2Pd, orthorhombic, Pbca (no. 61), a = 19.209(13) Å, b = 15.144(11) Å, c = 24.011(19) Å, V = 6985(9) Å3, Z = 8, Rgt(F) = 0.0292, wRref(F2) = 0.0867, T = 100 K.

CCDC no.: 1959874

The crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Yellow plate
Size:0.87 × 0.48 × 0.08 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.81 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω-scans
θmax, completeness:28°, >99%
N(hkl)measured, N(hkl)unique, Rint:135723, 8414, 0.068
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 6389
N(param)refined:386
Programs:Bruker programs [1], SHELX [2], [3], DIAMOND [4], OLEX2 [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Pd10.34604(2)0.34944(2)0.00259(2)0.03170(6)
O10.28352(9)0.54148(10)−0.01254(7)0.0426(4)
H10.3340(13)0.2905(17)0.1215(11)0.039(7)*
N10.30666(12)0.32609(15)0.13116(9)0.0464(5)
P10.29869(3)0.40420(4)0.08213(2)0.03481(13)
P20.30537(3)0.45920(4)−0.05036(2)0.03432(13)
Cl10.40687(4)0.23729(4)0.05080(3)0.05095(17)
Cl20.37399(4)0.28143(4)−0.08175(3)0.05391(17)
C10.27759(9)0.31646(11)0.18487(6)0.0417(5)
C20.30366(9)0.25065(11)0.21943(7)0.0512(6)
C30.27644(12)0.23950(12)0.27261(7)0.0731(9)
H30.2938820.1954730.2957250.088*
C40.22317(12)0.29415(15)0.29123(6)0.0779(10)
H40.2049640.2866840.3268080.093*
C50.19711(10)0.35995(13)0.25667(8)0.0665(8)
H50.1614620.3965120.2691340.080*
C60.22432(9)0.37110(11)0.20350(7)0.0552(7)
H60.2068780.4151300.1803760.066*
C70.35830(17)0.1860(2)0.19967(15)0.0707(9)
H7A0.3690420.1453430.2291190.106*
H7B0.3996360.2175600.1892560.106*
H7C0.3409150.1539980.1680730.106*
C80.24480(17)0.61691(18)−0.03345(13)0.0614(8)
H8A0.2682070.640869−0.0653730.092*
H8B0.2418170.661184−0.0049340.092*
H8C0.1987710.598511−0.0438490.092*
C110.20544(12)0.41785(14)0.07592(9)0.0351(5)
C120.16605(14)0.34120(15)0.06944(11)0.0438(6)
H120.1881840.2865790.0690310.053*
C130.09482(14)0.34532(16)0.06365(11)0.0467(6)
H130.0697590.2934610.0583260.056*
C140.05968(13)0.42525(17)0.06560(11)0.0452(6)
C150.09943(13)0.50176(16)0.07133(12)0.0454(6)
H150.0771630.5562700.0721060.054*
C160.17106(12)0.49857(15)0.07588(10)0.0390(5)
H160.1963870.5506850.0789300.047*
C17−0.01840(14)0.4286(2)0.06219(15)0.0666(8)
H17A−0.0343290.3870010.0348310.100*
H17B−0.0328400.4869610.0517600.100*
H17C−0.0379120.4138740.0978180.100*
C210.33864(12)0.50497(15)0.10745(10)0.0381(5)
C220.31458(14)0.55326(18)0.15282(11)0.0500(6)
H220.2724700.5382310.1694130.060*
C230.35298(15)0.62382(19)0.17357(12)0.0546(7)
H230.3359860.6554350.2038590.065*
C240.41584(14)0.64794(16)0.15012(11)0.0471(6)
C250.43908(14)0.60181(17)0.10429(11)0.0465(6)
H250.4806230.6181380.0872630.056*
C260.40112(13)0.53111(16)0.08318(10)0.0419(5)
H260.4178090.5007480.0522760.050*
C270.45870(17)0.7219(2)0.17504(13)0.0654(8)
H27A0.4889810.6983850.2031750.098*
H27B0.4282640.7649800.1913820.098*
H27C0.4860450.7492390.1463560.098*
C310.36998(12)0.50347(15)−0.09767(10)0.0384(5)
C320.41113(13)0.57474(16)−0.08167(12)0.0469(6)
H320.4045600.600892−0.0470230.056*
C330.46217(14)0.60690(17)−0.11756(13)0.0538(7)
H330.4892680.654661−0.1064820.065*
C340.47337(13)0.56953(18)−0.16909(13)0.0511(7)
C350.43284(13)0.49833(18)−0.18447(12)0.0490(6)
H350.4400130.471900−0.2189570.059*
C360.38180(13)0.46560(16)−0.14957(11)0.0436(6)
H360.3550390.417685−0.1609200.052*
C370.52963(16)0.6039(2)−0.20745(16)0.0772(10)
H37A0.5714330.570188−0.2020980.116*
H37B0.5386100.664851−0.1991820.116*
H37C0.5145700.598421−0.2454140.116*
C410.23076(12)0.43098(16)−0.09218(10)0.0394(5)
C420.21244(14)0.4786(2)−0.13920(12)0.0540(7)
H420.2416140.522969−0.1523890.065*
C430.15090(15)0.4603(2)−0.16643(13)0.0662(9)
H430.1391830.492314−0.1981250.079*
C440.10613(15)0.3950(2)−0.14743(13)0.0634(8)
C450.12486(16)0.3481(2)−0.10113(13)0.0608(8)
H450.0952690.304372−0.0877620.073*
C460.18680(14)0.36439(18)−0.07383(11)0.0487(6)
H460.1990970.330578−0.0430280.058*
C470.03811(19)0.3768(3)−0.17663(18)0.1048(15)
H47A0.0411890.321716−0.1962290.157*
H47B0.0285430.423484−0.2025950.157*
H47C0.0013080.373716−0.1496540.157*

Source of materials

N,N-Bis(di-p-tolylphosphino)-o-tolueneamine (P–N–P ligand)

o-Toluidine (214 μL, 2.01 mmol) was dissolved in DCM (15 mL) and stirred in an ice bath. Triethylamine (2.2 mL, 15.8 mmol) was added to the mixture followed by chloro-di(p-toly)phosphine (909 μL, 4.02 mmol). The mixture was stirred for one hour before the ice bath was removed. The reaction was stirred for an additional twelve hours at room temperature (25 °C). The product was obtained by filtering and removing the solvent under reduced pressure giving a yield of 0.655 g (61%). 1H NMR (600.28 MHz,CD2Cl2, 25 °C): δH 2.66 (3 H, s, 1 CH3), 2.35 (12 H, s, 4 CH3), 6.59 (1 H, d, J = 7.9 Hz, 1 CH), 6.84 (1 H, m, 1 CH), 7.02 (10 H, m, 10 CH), 7.19 (4 H, s, 4 CH), 7.32 (4 H, m, 4 CH). 31P NMR (121.49 MHz, CD2Cl2, 25 °C, H3PO4): δP 59.90 (s).

Title complex: a dichloromethane (5.0 mL) solution of N,N-bis(di-p-tolylphosphino)-o-tolueneamine (20 mg, 0.087 mmol) was added drop wise to a dichloromethane (5.0 mL) solution of dichloro(1,5-cyclooctadiene) palladium(II) (20 mg, 0.070 mmol). This reaction mixture was stirred for 30 minutes, and then the solvent was evaporated yielding yellow powder ([Pd(PNP)Cl2]) with a yield of 35 mg (71%). 1H NMR (300 MHz, CD2Cl2, 25 °C): δH 2.41 (12 H, s, 4 CH3), 6.63 (1 H, d, J = 8.0 Hz, 1 CH), 6.97 (2 H, m, 2 CH), 7.22 (9 H, m, 9 CH), 7.76 (8 H, m, 8 CH). 31P NMR (121.49 MHz, CD2Cl2, 25 °C, H3PO4): δP 35.25 (s). To obtain the above mentioned complex the yellow powder was dissolved in methanol and left to re-crystallize. One of the P–N bonds undergoes a facile cleavage in methanol to form the above mentioned product.

Experimental details

The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.95 and 0.98 Å and Uiso(H) = 1.2Ueq(C) and 1.5eq(C) respectively. The H atom on the N atom was placed according to the electron density map and refined isotropically.

Comment

Palladium(II) complexes containing phosphine and nitrogen donor atoms have been extensively utilized in various catalytic reactions such as the Buchwald-Hartwig and Suzuki cross coupling reactions [6], [7], [8], [9], [10], [11]. The success of such ligands owes it to the fact that both the steric and the electronic properties of the donor groups can be easily altered to develop new highly effective catalysts [10]. More recently, attention has been directed towards designing chelating ligands such as diphosphinoamine (P—N—P) with easily tunable peripheries [11]. Unlike the hit-and-run/combinatorial approach often adopted due to various reasons, the approach described herein involves critical stepwise ligand design strategy. The importance of such an approach is underlined in a number of tri- and tetramerisation of ethylene, and other, catalytic reactivity studies reported in literature [12], [13], [14], [15].

The title complex forms part of an ongoing research study on the development of highly effective palladium, and platinum group metals in general, catalysts for various organic transformations [12], [13], [14], [15], [16], [17], [18], [19]. The two Cl ligands on the title complex adopt a cis-conformation while the distorted square planar geometry is illustrated by a 93.83(2)° bond angle formed by the P–Pd–P bonds. The Pd–P and Pd–Cl distances are 2.2339(6) Å (Pd1-P2), 2.2719(6) Å (Pd1-P1), 2.3346(6) Å (Pd1–Cl2) and 2.3642(6) Å (Pd1–Cl1), respectively, and are comparable to other similar compounds found in literature [9], [19], [20], [21], [22], [23], [24]. The crystal structure is further stabilized by an intermolecular C-H⋯Cl hydrogen bond and a C-H⋯π interaction.

Acknowledgements

Financial assistance from the University of the Free State Research Fund, SASOL and the South African National Research Foundation (SA-NRF/THRIP) is hereby gratefully acknowledged. This work is based on research supported in part by the National Research Foundation of South Africa. The Grant holders acknowledge that opinions, findings and conclusions or recommendations expressed herein are that of the author(s) and that SASOL and/ or the NRF accepts no liability whatsoever in this regard.

References

1. Bruker: APEX3, SAINT-Plus, XPREP. Bruker AXS Inc., Madison, WI, USA (2016).Suche in Google Scholar

2. Sheldrick, G. M.: SHELXT − integrated space-group and crystal-structure determination. Acta Crystallogr. A71 (2015) 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central

4. Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 3.2i. Crystal Impact, Bonn, Germany (2012).Suche in Google Scholar

5. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42 (2009) 339–341.10.1107/S0021889808042726Suche in Google Scholar

6. Fors, B. P.; Buchwald, S. L.: A multi-ligand based Pd catalyst for C—N cross-coupling reactions. J. Am. Chem. Soc. 132 (2010) 15914–15917.10.1021/ja108074tSuche in Google Scholar PubMed PubMed Central

7. Bedford, R. B.; Hazelwood, S. L.; Limmert, M. E.: The role of ligand transformation on the performance of phosphite- and phosphinite-based palladium catalysts in the Suzuki reaction. Organometallics. 22 (2003) 1364–1371.10.1021/om020941fSuche in Google Scholar

8. Li, L.; Zhao, S.; Joshi-Pangu, A.; Diane, M.; Biscoe, M. R.: Stereospecific Pd-catalyzed cross-coupling reactions of secondary alkylboron nucleophiles and aryl chlorides. J. Am. Chem. Soc. 136 (2014) 14027–14030.10.1021/ja508815wSuche in Google Scholar PubMed PubMed Central

9. Harding, P.; Harding, D. J.; Saithong, S.; Pakawatchai, C.; Youngme, S.: trans-Dichloro(triethylamine-kN)(triphenyl-phosphine-kP) palladium(II). Acta Crystallogr. E62 (2006) m1616–m1617.10.1107/S1600536806022914Suche in Google Scholar

10. Cadierno, V.; Diez, J.; Garcia-Alvarez, J.; Gimeno, J.; Nebra, N.; Rubio-Garcia, J.: Synthesis and reactivity studies of palladium(II) complexes containing the N-phosphorylated iminophosphorane-phosphine ligands Ph2PCH2P{=NP(=O)(OR)2}Ph2 (R = Et, Ph): application to the catalytic synthesis of 2,3-dimethylfuran. Dalton Trans. 47 (2006) 5593–5604.10.1039/B609359KSuche in Google Scholar PubMed

11. Cloete, N.; Visser, H. G.; Engelbrecht, I.; Overett, M. J.; Gabrielli, W. F.; Roodt, A.: Ethylene tri- and tetramerization: a steric parameter selectivity switch from X-ray crystallography and computational analysis. Inorg. Chem. 52 (2013) 2268–2270.10.1021/ic302578aSuche in Google Scholar PubMed

12. Bollmann, A.; Blann, K.; Dixon, J. T.; Hess, F. M.; Killian, E.; Maumela, H.; McGuinness, D. S.; Morgan, D. H.; Neveling, A.; Otto, S.; Overett, M.; Slawin, A. M. Z.; Wasserscheid, P.; Kuhlmann, S.: Ethylene tetramerization: a new route to produce 1-octene in exceptionally high selectivities. J. Am. Chem. Soc. 126 (2004) 14712–14713.10.1021/ja045602nSuche in Google Scholar PubMed

13. Overett, M. J.; Blann, K.; Bollmann, A.; Dixon, J. T.; Hess, F. M.; Killian, E.; Maumela, H.; Morgan, D. H.; Neveling, A.; Otto, S.: Ethylene trimerisation and tetramerisation catalysts with polar-substituted diphosphinoamine ligands. Chem. Commun. 0 (2005) 622–624.10.1039/b412432dSuche in Google Scholar

14. Jones, W. D.; Reynolds, K. A.; Sperry, C. K.; Lachicotte, R. J.: Selective carbonylation routes to thiocarbamates. An alternative to phosgene. Organometallics. 19 (2000) 1661–1669.10.1021/om990931nSuche in Google Scholar

15. Dobrynin, M. V.; Pretorius, C.; Kama, D. V.; Roodt, A.; Boyarskiy, V. P.; Islamova, R. M.: Rhodium (I)-catalysed cross-linking of polysiloxanes conducted at room temperature. J. Catal. 372 (2019) 193–200.10.1016/j.jcat.2019.03.004Suche in Google Scholar

16. Johnson, M. T.; Johansson, R.; Kondrashow, M. V.; Steyl, G.; Ahlquist, M. S. G.; Roodt, A.; Wendt, O. F.: Mechanisms of the CO2 insertion into (PCP) palladium allyl and methyl σ-bonds. A kinetic and computational study. Organometallics. 29 (2010) 3521–3529.10.1021/om100325vSuche in Google Scholar

17. Ferreira, A. C.; Crous, R.; Bennie, L.; Meij, A. M. M.; Blann, K.; Bezuidenhoudt, B. C. B.; Young, D. A.; Green, M. J.; Roodt, A.: Borate esters as alternative acid promoters in the palladium-catalyzed methoxycarbonylation of ethylene. Angew. Chem. Int. Ed. 46 (2007) 2273–2275.10.1002/anie.200603751Suche in Google Scholar

18. Meij, A. M. M.; Otto, S.; Roodt, A.: Synthesis and characterization of palladium(II) iodo complexes containing water soluble phosphine ligands. Inorg. Chim. Acta. 358 (2005) 1005–1011.10.1016/j.ica.2004.11.021Suche in Google Scholar

19. Otto, S.; Ionescu, A.; Roodt, A.: Tertiary phosphine abstraction from a platinum(II) coordination complex with SeCN: Crystal and molecular structures of Se = PTA and [Se = PTA-Me]I.MeOH. J. Organomet. Chem. 690 (2005) 4337–4342.10.1016/j.jorganchem.2005.07.004Suche in Google Scholar

20. Elsegood, V. R. J.; Holmes, K. E.; Kelly, P. F.; MacLean, J. E.; Parr, J.; Stonehouse, J. M.: Preparation of the first complexes of bidentate sulfimides; the X-ray crystal structures of [PdBr2{1,4-(PhS{NH})2C6H4}]2, [PdCl2{1,2-(PhS{NH})(PhS)C6H4}] and trans-[PdCl2{1,2-(PhS{NH}) (PhS)C6H4}PPh3]. Eur. J. Inor. Chem. 2003 (2003) 120–127.10.1002/ejic.200390012Suche in Google Scholar

21. Babu, R. P. K.; Krishnamurthy, S. S.; Nethaji, M.: Organometallic chemistry of diphosphazanes – 13.1 Palladium complexes of unsymmetrical diphosphazanes Ph2PN(Pri)PYY’. Polyhedron. 15 (1996) 2689–2699.10.1016/0277-5387(95)00561-7Suche in Google Scholar

22. Irisli, S.; Karaman, M.; Arda, N.; Dindar, B.; Buyukgungor, O.: Palladium and platinum complexes of the new ligands containing P–N and P–O bonds. Polyhedron. 81 (2014) 203–209.10.1016/j.poly.2014.06.010Suche in Google Scholar

23. Krishna, H.; Krishnamurthy, S. S.; Nethaji, M.; Murugavel, R.; Prabusankar, G.: Unusual reactivity of a sterically hindered diphosphazane ligand, EtN{P(OR)2}2, (R = C6H3(Pri)2-2,6) towards (η3-allyl)palladium precursors. Dalton Trans. (2007) 2908–2914.10.1039/B703308GSuche in Google Scholar

24. Kama, D.; Brink, A.; Visser, H.: Crystal structure of bis(μ2-chlorido)-bis(di-p-tolylhydroxyphosphine-κP)-bis(di-p-tolylphosphite-κP)dipalladium(II). Z. Kristallogr. 231 (2016) 1081–1083.10.1515/ncrs-2016-0067Suche in Google Scholar

Received: 2019-09-06
Accepted: 2019-10-17
Published Online: 2019-11-02
Published in Print: 2020-02-25

©2019 Dumisani V. Kama et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Artikel in diesem Heft

  1. Frontmatter
  2. Synthesis and crystal structure of bis{5-fluorine-2-(((4-(1-(methoxy-imino)ethyl)phenyl) imino)methyl)phenolato-κ2N,O}copper(II), C32H28CuF2N4O4
  3. Redetermination of the crystal structure of N′-(3-ethoxy-2-hydroxybenzylidene)-4-fluorobenzohydrazide monohydrate, C16H17FN2O4
  4. The crystal structure of (E)-N′-(1-(3-chloro-4-fluorophenyl) ethylidene)-2-hydroxybenzohydrazide, C15H12ClFN2O2
  5. Crystal structure of (E)-N-[4-(1H)-imidazolyl phenyl]-(2-methylphenyl)methanimine, C17H15N3
  6. The crystal structure of 1-benzyl-4-(2-(phenylethynyl)phenyl)-1H-1,2,3-triazole, C23H17N3
  7. Crystal structure of catena-poly[{μ2-1,5-bis(diphenylphosphanyl)pentane-κ2P:P′}dichloridocadmium(II)], C29H30CdCl2P2
  8. Crystal structure of methyl (E)-N2-((3-methylquinolin-8-yl)sulfonyl)-Nω-nitro-L-argininate - ethanol (1/1), C19H28N6O7S
  9. The crystal structure of trans-carbonyl-(diphenylcyclohexyl-phosphine-κP)iodidomethyl-(2-oxopyridin-1(2H)-olato-κ2O,O′)rhodium(III), C25H28INO3PRh
  10. Crystal structure of N-(amino(pyrazin-2-yl)methylene)-6-methylpyridin-1-ium-3-carbohydrazonate-κ3O,N,N′)-(dinitrato-κ1O)zinc(II), C12H12N8O7Zn
  11. The crystal structure of dichlorido-(tris(2-benzimidazolylmethyl)amine-κ4N,N′,N′′,N′′′)chromium(III) chloride — methanol (1/3), CrC27H33Cl3N7O3
  12. Crystal structure of catena-poly[aqua(μ4-piperazine-1,4-bis(2-hydroxypropanesulfonato-κ8O,O′:O′,N:N′,O′′:O′′,O′′′))silver(I)], C10H24Ag2N2O10S2
  13. Crystal structure of bis(μ3-oxido)-bis(μ2–2,3,4,5-tetrafluorobenzoato-κ2O:O′)-bis(2,3,4,5-tetrafluorobenzoato-κO)-oktakis(3-chlorobenzyl-κC)tetratin(IV), C84H52Cl8F16O10Sn4
  14. Crystal structure of (E)-1-{4-[(4-fluoro-2-hydroxybenzylidene)amino]phenyl}ethanone O-methyl oxime, C16H15FN2O2
  15. Crystal structure of catena-[(bis(O,O′-diethyl dithiophosphato-S,S′)-μ2-1,2-bis(3-pyridylmethylene)hydrazine-N,N′)zinc(II)], {C20H30N4O4P2S4Zn}n
  16. Crystal structure of methyl 2-(4-(3-iodopyrazolo[1,5-a]pyrimidin-6-yl)phenyl)acetate, C15H12IN3O2
  17. Crystal structure of hexacarbonyl-(μ2-methanoato-k2O:O′)-(μ2–bis(di-p-tolylphosphino)cyclohexylamine-κ2P:P′)dirhenium(I), C42H45NO8P2Re2
  18. The cocrystal structure of 1′-hydroxy-1H,1′H-[5,5′-bitetrazol]-1-olate and 1,10-phenanthrolin-1-ium, C14H10N10O2
  19. The crystal structure of 1-benzyl-2-((4-(tert-butyl)phenyl)ethynyl)pyridin-1-ium bromide,C24H24BrN
  20. Crystal structure of (5,5′-bitetrazole-1,1′-diolate)-bis(1,10-phenanthroline)-copper(II), C26H16CuN12O2
  21. Crystal structure of bis(ammonium) diaqua-tetrakis(4-hydroxybenzoato)-manganese(II) tetrahydrate, [NH4]2[C28H24MnO14] ⋅ 4(H2O)
  22. The crystal structure of 3-chloro-1-hydrazino-2,4,6-trinitrobenzene, C6H4ClN5O6
  23. Crystal structure of catena-[(μ2-pyrazine-κ2N:N′)-bis(O,O′-di-ethyldithiophosphato-κ2S,S′)cadmium(II)], {C12H24CdN2O4P2S4}n
  24. Crystal structure of catena-poly[(μ2-pyrazine-N,N′)-bis(O,O′-di-isopropyldithiophosphato-S,S′)cadmium(II) acetonitrile di-solvate], [C16H32CdN2O4P2S4⋅2(C2H3N)]n
  25. Crystal structure of catena-poly{(μ2-N1,N2-bis[(pyridin-4-yl)methyl]ethanediamide-κ2N:N′)-bis(O,O′-di-isopropyldithiophosphato-κ1S)zinc(II)} — acetonitrile (1/1), C26H42N4O6P2S4Zn⋅C2H3N
  26. Crystal structure of tetraqua-bis(4-(hydroxymethyl)benzoato-κO)cobalt(II), C16H22O10Co
  27. Crystal structure of catena-[(bis(O,O′-diethyl dithiophosphato-S,S′)-μ2-1,2-bis(4-pyridylmethylene)hydrazine-N,N′)cadmium(II)], {C20H30CdN4O4P2S4}n
  28. Crystal structure of catena-poly[(μ2-1,2-bis(3-pyridylmethylene)hydrazine-κ2N:N′)-bis(O,O′-dimethyl dithiophosphato-κ2-S,S′)cadmium(II)], {C16H22CdN4O4P2S4}n
  29. Crystal structure of catena-poly[(bis(O,O′-diethyl dithiophosphato-κ2S,S′)-μ2-1,2-bis(3-pyridylmethylene)hydrazine-κ2N:N′)cadmium(II)], {C20H30CdN4O4P2S4}n
  30. The crystal structure of catena-poly[(E)-2-(((5-((trimethylstannyl)thio)-1,3,4-thiadiazol-2-yl)imino)methyl)phenol], C12H15N3OS2Sn
  31. Crystal structure of dichlorido(N-o-tolyl-1,1-di-p-tolylphosphanamine–κ1P)-(methoxydi-p-tolylphosphane-κ1P)palladium(II), C36H39Cl2NOP2Pd
  32. The crystal structure of the triclinic polymorph of hexameric (trimethylsilyl)methyllithium, C24H66Li6Si6
  33. Crystal structure of bis(hydroxydi(pyridin-2-yl)methanolato-κ3N,N′O)cobalt(III) 7,7,8,8-tetracyanoquinodimethane, C34H22CoN8O4
  34. Synthesis and crystal structure of benzyl 5-oxo-5-phenyl-2-(quinolin-2-yl)pentanoate, C27H23NO3
  35. Crystal structure of 5,5-dimethyl-3-oxocyclohex-1-en-1-yl 4-(2,2-dichloroacetyl)-3,4-dihydro-2 H-benzo[b][1,4]oxazine-7-carboxylate, C19H19Cl2NO5
  36. Crystal structure of dipentyl 2,5-dihydroxycyclohexa-1,4-diene-1,4-dicarboxylate, C18H28O6
  37. The crystal structure of catena-poly[diaqua-(μ4-5-(benzo[d]thiazol-2-yl)benzene-1,3-dicarboxylate-κ4O,O′:O′′,O′′′)-(μ4-5-(benzo[d]thiazol-2-yl)benzene-1,3-dicarboxylate-κ4O,O′:O′′,O′′′)dicadmium(II)], C30H18Cd2N2O10S2
  38. Crystal structure of 2,7-diiodo-1,3,6,8-tetramethyl-bis(difluoroboron)-1,2-bis((1H-pyrrol-2-yl)methylene)hydrazine, C14H14B2F4I2N4
  39. A dinuclear Eu(III) complex in the crystal structure of dodecaaqua-bis(μ2-4-(1H-tetrazol-5-yl)benzoato-κ2O:O′) bis(5-(4-carboxylatophenyl)tetrazol-1-ide) tetrahydrate, C32H50Eu2N16O24
  40. Crystal structure and anti-inflammatory activity of (3E,5E)-3-(2-fluorobenzylidene)-1-((4-fluorophenyl)sulfonyl)-5-(pyridin-3-ylmethylene)piperidin-4-one, C24H18F2N2O3S
  41. Crystal structure and anti-inflammatory activity of (3E,5E)-3-(2-fluorobenzylidene)-1-((4-acetamidophenyl)sulfonyl)-5-(pyridin-3-ylmethylene)piperidin-4-one-methanol-hydrate (2/1/1), C53H50F2N6O10S2
  42. Crystal structure of 4-dimethylamino-pyridin-1-ium uracil-1-acetate, C13H16N4O4
  43. Crystal structure of dimethylammonium 5-fluorouracil-1-acetate, C8H12N3O4F
  44. Crystal structure of bis(N′-((5-(ethoxycarbonyl)-1H-pyrrol-2-yl)methylene)-N-ethylcarbamohydrazonothioato-κ2N,O)nickel(II), C22H30N8O4S2Ni
  45. Crystal structure of chlorido-(η5-pentamethylcyclopentadienyl)-((bis-pyrazol-1-yl)methane-κ2N,N′) rhodium(III) hexafluorophosphate. (C17H23ClN4RhF6P)
  46. The crystal structure of 5-(benzofuran-2-carbonyl)-N-cyclohexyl-5,6-dihydrophenanthridine-6-carboxamide, C29H26N2O3
  47. The crystal structure of 2-oxo-2H-chromen-4-yl acetate, C11H8O4
  48. The crystal structure of 2-nitroisophthalic acid, C8H5NO6
  49. Crystal structure of 3-fluoro-9-methoxy-4b,5,14,15-tetrahydro-6H-isoquinolino [2′,1′:1,6]pyrazino[2,3-b]quinoxaline, C19H17FN4O
  50. Crystal structure of (4-fluorobenzyl-κC)(bis(2-hydroxyethyl) carbamodithioato-κ2S,S′)(2,2′-imino-diethanolato-κ3N,O,O′)tin(IV), C16H25FN2O4S2Sn
  51. Crystal structure and anti-inflammatory activity of (3E,5E)-1-((4-bromophenyl)sulfonyl)-3-(pyridin-4-ylmethylene)-5-(2-(trifluoromethyl)benzylidene)piperidin-4-one, C25H18BrF3N2O3S
  52. Crystal structure and anti-inflammatory activity of (3E,5E)-1-((4-chlorophenyl)sulfonyl)-3-(pyridin-4-ylmethylene)-5-(2-(trifluoromethyl)benzylidene)piperidin-4-one, C25H18ClF3N2O3S
  53. The crystal structure of 3-((1R,2S)-1-methylpyrrolidin-1-ium-2-yl)pyridin-1-ium tetrachloridomanganate(II), C10H16Cl4MnN2
  54. The crystal structure of 3-carboxy-5-methylpyridin-1-ium-2-carboxylate, C8H7NO4
  55. Crystal structure of bis(3-methoxy-N-(1-(pyridin-2-yl)ethylidene)benzohydrazonato κ3O,N,N′)zinc(II), C30H28N6O4Zn
  56. Crystal structure of dichlorido-(4,4′-dichloro-2,2′-bipyridine-κ2N,N′)platinum(II) — acetone (1/1), C13H12Cl4N2PtO
  57. Crystal structure of diethyl 6,12-bis(4-fluorophenyl)-2,10-dimethoxy-3,9-diphenyl-3,9-diazatetracyclo[6.4.0.02,7.04,11]dodecane-1,5-dicarboxylate, C42H42F2N2O6
  58. Synthesis and crystal structure of (1E,3E)-2-hydroxy-5-methylisophthalaldehyde O,O-di(2-((((E)-(2-hydroxynaphthalen-1-yl)methylene)amino)oxy)ethyl) dioxime, C35H32N4O7
  59. The crystal structure of 2-phenyl-4,6-bis(prop-2-yn-1-yloxy)-1,3,5-triazine, C15H11N3O2
  60. Crystal structure of 7-(2-{4-[(4-bromophenyl)methyl]piperazin-1-yl}ethoxy)-2H-chromen-2-one, C22H23BrN2O3
  61. Crystal structure of bis-[N-(3-ethyl-1-pyrazin-2-yl-ethylidene)-3-bromo-benzoic acid-hydrazonato-κ3O,N,N′)]-cadmium(II), C30H28N8O2Br2Cd
  62. Crystal structure of 6-(4-fluorophenyl)-4-methoxy-2H-pyran-2-one, C12H9FO3
  63. Crystal structure of 3-methyl-3-(2,4,5-trimethyl-3,6-dioxocyclohexa-1,4-dien-1-yl)butanoic acid, C14H18O4
  64. The crystal structure of 3-bromo-6-methoxy-2-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine, C13H19BBrNO3
  65. The crystal structure of 6-methyl-3,20-dioxo-19-norpregna-4,6-dien-17-yl acetate–2,4-dihydroxybenzoic acid (1/1), C30H36O8
  66. The crystal structure of (5-chloro-2-hydroxy-N-(4-methoxy-2-oxidobenzylidene)benzohydrazonato-κ3N,O,O′)-(pyridine-κ1N)copper(II), C20H16ClCuN3O4
  67. Crystal structure of (E)-2-cyano-N′-(1-(3-ethylpyrazin-2-yl)ethylidene)acetohydrazide, C11H3N5O
  68. Crystal structure of (2,7-dihexyl-9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane), C51H56OP2
  69. Crystal structure of 5-((bis(pyridin-2-ylmethyl)amino)methyl)quinolin-8-ol, C22H20N4O
  70. Crystal structure of 3-(2-(5-(4-fluorophenyl)-3-(4-methylphenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4-yl)-2H-chromen-2-one, C28H20FN3O2S
  71. The crystal structure of [(tetra-μ2-2,6-difluorobenzoato-κ2O:O′)-bis-(2,6-difluorobenzoato-κ2O:O′)-bis-(1,10-phenanthroline-κ2N:N′)]dierbium(III) C66H34N4O12F12Er2
  72. Crystal structure of bis(3-chloro-N-(1-(pyrazin-2-yl)ethylidene)benzohydrazonato-k3N,N′,O)nickel(II), C26H20N8O2Cl2Ni
  73. Crystal structure of (E)-3-(3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-one, C27H21N5O
  74. Crystal structure of (E)-N′-((4-aminophenyl)sulfonyl)-N,N-dimethylformimidamide, C9H13N3O2S
  75. Crystal structure of η6-p-cymene-iodido-(N-isopropyl-1-(pyridin-2-yl)methanimine-κ2N,N′)ruthenium(II) hexafluorophosphate(V), C19H26IN2F6Ru
  76. Crystal structure of 6-iodo-3-phenyl-2-propylquinazolin-4(3H)-one, C17H15IN2O
  77. Low temperature redetermination of the crystal structure of catena-poly[[tri-4-fluorobenzyltin(IV)]μ2-pyridine-4-carboxylato-κ2N:O], {C27H22F3NO2Sn}n
  78. Crystal structure of bis(2-propyl-1H-benzo[d]imidazol-3-ium) tetrachloridozincate(II), C10H13Cl4N2Zn
  79. The crystal structure of (Z)-3-hydrazono-5-nitroindolin-2-one – dimethyl sulfoxide (1/1), C8H6N4O3
  80. Crystal structure of bis-[N-(1-pyrazin-2-yl-ethylidene)-cyanoacetic acid-hydrazonato-κ3O,N,N′)]-zinc(II), C18H16N10O2Zn
  81. Crystal structure and photochromism of 1-(2,5-dimethyl-3-thienyl)-2-[2-methyl-5-(benzaldoxime)-3-thienyl] perfluorocyclopentene, C23H17F6NOS2
Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2019-0659/html
Button zum nach oben scrollen