Startseite The crystal structure of N-butylpyridinium bis(μ2-dichlorido)-tetrachloridodicopper(II), C18H28N2Cu2Cl6
Artikel Open Access

The crystal structure of N-butylpyridinium bis(μ2-dichlorido)-tetrachloridodicopper(II), C18H28N2Cu2Cl6

  • A. Abouserie , U. Schilde EMAIL logo und A. Taubert
Veröffentlicht/Copyright: 22. Juni 2018

Abstract

C9H14Cl3CuN, monoclinic, P21/n (no. 14), a = 9.6625(6) Å, b = 9.3486(3) Å, c = 14.1168(8) Å, β = 102.288(5)°, V = 1245.97(11) Å3, Z = 4, Rgt(F) = 0.0182, wRref(F2) = 0.0499, T = 210(2) K.

CCDC no.: 1843747

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Red block
Size:1.00 × 0.45 × 0.33 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:2.36 mm−1
Diffractometer, scan mode:STOE IPDS 2, ω-scan, Δω = 1.0 deg
θmax, completeness:25°, >99%
N(hkl)measured, N(hkl)unique, Rint:15411, 2186, 0.049
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2121
N(param)refined:184
Programs:SHELX [1], WinGX and ORTEP [2], DIAMOND [3], PLATON [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Cl10.50633(4)0.82761(4)−0.00540(3)0.03410(12)
Cl20.44379(4)1.07973(4)0.22997(2)0.03259(12)
Cl30.20539(4)0.87418(4)0.08240(3)0.03547(12)
Cu10.40485(2)0.98814(2)0.08398(2)0.02442(10)
N10.28674(13)1.46735(14)0.11596(9)0.0242(3)
C10.21892(16)1.34958(18)0.13482(12)0.0297(3)
H10.2378(19)1.322(2)0.1974(15)0.039(5)*
C20.12862(17)1.27846(19)0.06119(12)0.0343(4)
H20.089(2)1.191(2)0.0757(15)0.051(6)*
C30.10826(16)1.33051(19)−0.03214(12)0.0331(4)
H30.0436(19)1.288(2)−0.0842(13)0.035(5)*
C40.17871(17)1.45291(19)−0.04981(12)0.0329(4)
H40.163(2)1.4933(19)−0.1093(16)0.038(6)*
C50.26794(18)1.51946(18)0.02547(12)0.0297(3)
H50.311(2)1.601(2)0.0194(14)0.037(5)*
C60.38816(16)1.53919(19)0.19600(11)0.0289(3)
H6A0.384(2)1.635(2)0.1834(14)0.038(5)*
H6B0.352(2)1.5181(19)0.2543(15)0.035(5)*
C70.53618(18)1.48169(19)0.20422(15)0.0350(4)
H7A0.533(2)1.378(2)0.2114(14)0.045(5)*
H7B0.562(2)1.501(2)0.1446(17)0.042(6)*
C80.64016(19)1.5454(2)0.29048(14)0.0395(4)
H8A0.725(3)1.495(2)0.2967(16)0.043(6)*
H8B0.607(2)1.525(2)0.3482(17)0.044(6)*
C90.6639(2)1.7040(2)0.28281(17)0.0471(5)
H9A0.584(2)1.757(2)0.2827(14)0.042(5)*
H9B0.739(2)1.741(2)0.3342(16)0.059(6)*
H9C0.695(3)1.726(3)0.2235(19)0.071(7)*

Source of materials

The title compound has been prepared according to Refs. [5], [6], [7], [8]. To a solution of N-butylpyridinium chloride (0.342 g, 2 mmol) in dry acetonitrile (6 mL) copper(II) chloride (0.34 g, 2 mmol) was added. This mixture was stirred to reflux for 3 h. The solvent was evaporated with a rotary evaporator at 60 °C under reduced pressure and the product was dried in vacuo. Yield: 0.59 g (98.3%). MS positive mode: m/z = 136.1126 [C9H14N]+, and MS negative mode: m/z = 169.8 [CuCl3]. Elemental analysis for C18H28Cl6Cu2N2 calculated (found) C, 35.31% (35.34%); H, 4.61% (4.43%); N, 4.58% (4.59%). Red crystals (Mp. 94–96 °C) suitable for single crystal X-ray diffraction were grown by diffusion of methyl tert-butyl ether vapor into ethanolic solution of the compound.

Experimental details

Coordinates of hydrogen atoms were refined without any constraints or restraints.

Elemental analysis (CHN) was carried out on an Elementar vario EL III analyser with a limit of detection of 0.3%. Mass spectroscopy (MS) was performed on a Micromass QTOF (Quadrupol − Time of flight) with an electrospray ionization (ESI) source operating in positive and negative ionization modes, with a range of m/z 50-800. Samples were injected as dilute solutions in methanol. Melting points were measured with a Melting Point Meter KSP1N.

Comment

Copper (II) complexes exhibit very rich and diverse coordination geometries due to the presence of the Jahn-Teller distortions in the d9 electronic system [9]. Among those, chloridocuprate(II) salts have attracted considerable interest due to their magnetic [10, 11] , thermochromic [9], phase transition [12], and non-linear optical behavior [13]. For example, Willett and co-workers [14, 15] demonstrated that the hydrogen bonding plays an important role in the thermochromism that these compounds are known for; these authors also associated the color change with a change in ligand geometry.

Quite some of the tetrachloridocuprates are ionic liquids (ILs). ILs, low-temperature molten salts of a highly diverse chemical composition, have received tremendous attention for their (projected) high potential in many fields [16]. A number of these applications are driven by the specific physical and chemical properties of ILs, such as very low vapor pressure or low melting points but high ionicity [17], [18], [19], [20], [21]. As ILs are composed entirely of ions, their properties can be tuned by an judiciuous choice of the cation and the anion [22].

Of particular interest to the current study, metal-containing ILs (MILs) have been studied for a variety of properties such as their structural flexibility [23, 24] , electrochemical behavior [25], and the exploitation of their unique redox behavior, for example in applications for mercury removal from natural gas, etc. [26], [27], [28], [29]. Besides their intrinsic properties and application, MILs have also been used as ionic liquid precursors (ILPs) for inorganic nanomaterials, where the ILP acts as the solvent, the template, and the precursor for the inorganic material at the same time [19], [30], [31]. For example, ILPs have been used to synthesize CuCl, Au, Ag, metal oxide, Fe3C, and CuS nanomaterials [8], [30], [32], [33], [34], [35], [36], [37].

One of the key challenges in the ILP approach is the fact that for successful and efficient inorganic nanomaterials synthesis the fraction of the metal (which will be transformed to e.g. a metal sulfide in the course of the reaction) needs to be fairly high. Strategies to increase the metal content in the ILPs are thus of a very direct interest for improved yields from the synthetic procedure. In the quest for higher metal contents in the ILPs, we have therefore expanded the ILP platform to multinuclear ILs that can also serve as ILPs. The title compound is the first example of such a binuclear ILP. The article current focuses on the structure of the title compound. The transformation of the ILP to a series of inorganic materials will be described elsewhere.

The asymmetric unit of the title compound contains one cation and a half anion upper part of the figure. The second half is generated by symmetry because the [Cu2Cl6]2− unit is centrosymmetric. The CuCl3 subunits are doubly-bridged over the inversion centre. The average Cu—Cl bond lengths are 2.1936(4) Å (terminal) and 2.3100(4) Å (bridging) with a bridging Cu—Cl—Cu angle of 91.27(2)°, giving a distance between both copper atoms of 3.3027(4) Å. The coordination environment of the Cu atoms can be better described by a flattened tetrahedron rather than square-planar arrangement. The corresponding angles are 88.73(2)° [Cl(bridging) − Cu − Cl(bridging)], 100.01(2)° [Cl(terminal) − Cu − Cl(terminal)] and 98.79(2)° to 140.43(2)° [Cl(terminal) − Cu − Cl(bridging)]. The plane formed by the Cu atom and both terminal Cl atoms is twisted by an angle of 55.12° with respect to the plane defined by both Cu atoms and the bridging Cl atoms. The Cambridge Database contains 64 structures with isolated bibridged [Cu2Cl6]2− dimers, for example in [P(C6H5)4]2[Cu2Cl6] [38]. In contrast to the synthesis described here, where a 1:1 ratio of copper(II) chloride and N-butylpyridinium chloride was used yielding the dinuclear species, mononuclear isolated tetrachloridocopper(II) [CuCl4]2− was formed when N-butylpyridinium and copper(II) chloride in a ratio of 2:1 are used. In contrast, infinite zig-zag chains where the [Cu2Cl6]2− moieties are linked by weak interactions are observed when piperazinium rather than N-butylpyridinium cation is employed [39].

The packing of the title compound is stabilized by non-classical C—H⋯Cl hydrogen bonds between the [Cu2Cl6]2− anions and the pyridinium cations lower part of the figure. There are no interactions between neighboring [Cu2Cl6]2− groups.

References

Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Suche in Google Scholar

Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.10.1107/S0021889812029111Suche in Google Scholar

Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Ver. 4.5.1. Crystal Impact, Bonn, Germany (2017).Suche in Google Scholar

Spek, A. L.: PLATON − a multipurpose crystallographic tool. Acta Crystallogr. D65 (2011) 148–155.10.1107/S090744490804362XSuche in Google Scholar

Abouserie, A.; Zehbe, K.; Metzner, P.; Kelling, A.; Günter, C.; Schilde, U.; Strauch, P.; Körzdoerfer, T.; Taubert, A.: Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior. Eur. J. Inorg. Chem. (2017) 5640–5649.10.1002/ejic.201700826Suche in Google Scholar

Zhang, J.; Feng, H.; Yang, J.; Qin, Q.; Fan, H.; Wei, C.; Zheng, W.: Solvothermal synthesis of three-dimensional hierarchical CuS microspheres from a Cu-based ionic liquid precursor for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 7 (2015) 21735–21744.10.1021/acsami.5b04452Suche in Google Scholar

Neve, F.; Francescangeli, O.; Crispini, A.; Charmant, J.: A2 [MX4] copper (II) pyridinium salts. From ionic liquids to layered solids to liquid crystals. Chem. Mater. 13 (2001) 2032–2041.10.1021/cm000804dSuche in Google Scholar

Taubert, A.: CuCl Nanoplatelets from an ionic liquid-crystal precursor. Angew. Chem. Int. Ed. 116 (2004) 5494–5496.10.1002/ange.200460846Suche in Google Scholar

Bhattacharya, R.; Ray, M. S.; Dey, R.; Righi, L.; Bocelli, G.; Ghosh, A.: Synthesis, crystal structure and thermochromism of benzimidazolium tetrachlorocuprate: (C7H7N2)2[CuCl4]. Polyhedron. 21 (2002) 2561–2565.10.1016/S0277-5387(02)01237-8Suche in Google Scholar

Losee, D. B.; Hatfield, W. E.: Megnetization measurements on diethylenetriammonium chlorocuprate (II): Anisotropy and exchange fields in a two-dimensional Heisenberg ferromagnet. Phys. Rev. B. 10 (1974) 1122.10.1103/PhysRevB.10.1122Suche in Google Scholar

Rubtsova, T.; Kireeva, O.; Bulychev, B.; Streltsova, N.; Belsky, V.; Tarasov, B.: Complex formation of metal salts with macrocyclic polyethers in aprotic organic solvents: crystal structures of the molecular complex [MeCN.Mg.15C5(μ2-Cl)CuCl3] and the ionic complexes [(MeCN)2.Mg.15C5][Cu2Cl6], {[(MeCN)2.Mg.15C5][Cu3Cl8]}n, [(H2O)2.Mg.15C5][CuCl4].H2O and {[(H2O)2.Cu3Cl8][Mg.(H2O)6].[2(15C5)].H2On. Polyhedron. 11 (1992) 1929–1938.10.1016/S0277-5387(00)83742-0Suche in Google Scholar

Natarajan, M.; Prakash, B.: Phase transitions in ABX3 type halides. Phys. Status Solidi A. 4 (1971) K167–K172.10.1002/pssa.2210040331Suche in Google Scholar

Yu, J.-H.; Xu, J.-Q.; Song, Y.-J.; Bie, H.-Y.; Lu, J.; Wang, T.-G.: Syntheses and characterization of several copper-halo clusters. Chin. J. Chem. 23 (2005) 1030–1036.10.1002/cjoc.200591030Suche in Google Scholar

Bloomquist, D. R.; Willett, R. D.; Dodgen, H. W.: Thermochromism in copper (II) halide salts. 2. Bis (isopropylammonium) tetrachlorocuprate (II). J. Am. Chem. Soc. 103 (1981) 2610–2615.10.1021/ja00400a021Suche in Google Scholar

Willett, R.; Haugen, J.; Lebsack, J.; Morrey, J.: Thermochromism in copper (II) chlorides. Coordination geometry changes in tetrachlorocuprate (2-) anions. Inorg. Chem. 13 (1974) 2510–2513.10.1021/ic50140a040Suche in Google Scholar

Plechkova, N. V.; Seddon, K. R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37 (2008) 123–150.10.1039/B006677JSuche in Google Scholar

Wasserscheid, P.; Welton, T.: Ionic liquids in synthesis. John Wiley & Sons, Weinheim (2008).10.1002/9783527621194Suche in Google Scholar

Castner, E. W. Jr.; Wishart, J. F.: Spotlight on ionic liquids. J. Chem. Phys. 132 (2010) 120901.10.1063/1.3373178Suche in Google Scholar PubMed

Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99 (1999) 2071–2084.10.1021/cr980032tSuche in Google Scholar PubMed

Wishart, J. F.; Castner, E. W. Jr.: The physical chemistry of ionic liquids. J. Phys. Chem. B. 111 (2007) 4639–4640.10.1021/jp072262uSuche in Google Scholar

Freemantle, M.: An introduction to ionic liquids. Royal Society of Chemistry, Oxford (2010).10.1039/9781839168604Suche in Google Scholar

Lei, Z.; Chen, B.; Koo, Y.-M.; MacFarlane, D. R.: Introduction: ionic liquids. Chem. Rev. (2017) 6633–6635.10.1021/acs.chemrev.7b00246Suche in Google Scholar PubMed

Farra, R.; Thiel, K.; Winter, A.; Klamroth, T.; Pöppl, A.; Kelling, A.; Schilde, U.; Taubert, A.; Strauch, P.: Tetrahalidocuprates (II) − structure and EPR spectroscopy. Part 1: Tetrabromidocuprates (II). New J. Chem. 35 (2011) 2793–2803.10.1039/c1nj20271eSuche in Google Scholar

Winter, A.; Thiel, K.; Zabel, A.; Klamroth, T.; Pöppl, A.; Kelling, A.; Schilde, U.; Taubert, A.; Strauch, P.: Tetrahalidocuprates (II) − structure and EPR spectroscopy. Part 2: Tetrachloridocuprates (II). New J. Chem. 38 (2014) 1019–1030.10.1039/c3nj01039bSuche in Google Scholar

Zazybin, A.; Rafikova, K.; Yu, V.; Zolotareva, D.; Dembitsky, V. M.; Sasaki, T.: Metal-containing ionic liquids: current paradigm and applications. Russ. Chem. Rev. 86 (2017) 1254.10.1070/RCR4743Suche in Google Scholar

Pârvulescu, V. I.; Hardacre, C.: Catalysis in ionic liquids. Chem. Rev. 107 (2007) 2615–2665.10.1021/cr050948hSuche in Google Scholar PubMed

Binnemans, K.: Ionic liquid crystals. Chem. Rev. 105 (2005) 4148–4204.10.1021/cr0400919Suche in Google Scholar PubMed

Holbrey, J. D.; Seddon, K. R.: Ionic liquids. Clean Products and Processes. 1 (1999) 223–236.10.1007/s100980050036Suche in Google Scholar

Abai, M.; Atkins, M. P.; Hassan, A.; Holbrey, J. D.; Kuah, Y.; Nockemann, P.; Oliferenko, A. A.; Plechkova, N. V.; Rafeen, S.; Rahman, A. A.; Ramli, R.; Shariff, S. M.; Seddon, K. R.; Srinivasan, G.; Zou, Y.: An ionic liquid process for mercury removal from natural gas. Dalton Trans. 44 (2015) 8617–8624.10.1039/C4DT03273JSuche in Google Scholar PubMed

Taubert, A.; Li, Z.: Inorganic materials from ionic liquids. Dalton Trans. (2007) 723–727.10.1039/B616593ASuche in Google Scholar PubMed

Duan, X.; Ma, J.; Lian, J.; Zheng, W.: The art of using ionic liquids in the synthesis of inorganic nanomaterials. CrystEngComm. 16 (2014) 2550–2559.10.1039/c3ce41203bSuche in Google Scholar

Taubert, A.; Steiner, P.; Mantion, A.: Ionic liquid crystal precursors for inorganic particles: Phase diagram and thermal properties of a CuCl nanoplatelet precursor. J. Phys. Chem. B. 109 (2005) 15542–15547.10.1021/jp051262wSuche in Google Scholar PubMed

Taubert, A.; Arbell, I.; Mecke, A.; Graf, P.: Photoreduction of a crystalline Au (III) complex: A solidstate approach to metallic nanostructures. Gold Bulletin. 39 (2006) 205–211.10.1007/BF03215555Suche in Google Scholar

Kim, Y.; Heyne, B.; Abouserie, A.; Pries, C.; Ippen, C.; Günter, C.; Taubert, A.; Wedel, A.: CuS nanoplates from ionic liquid precursors-Application in organic photovoltaic cells. J. Chem. Phys. 148 (2018) 193818.10.1063/1.4991622Suche in Google Scholar PubMed

Antonietti, M.; Kuang, D.; Smarsly, B.; Zhou, Y.: Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew. Chem. Int. Ed. 43 (2004) 4988–4992.10.1002/anie.200460091Suche in Google Scholar PubMed

Dobbs, W.; Suisse, J. M.; Douce, L.; Welter, R.: Electrodeposition of Silver Particles and Gold Nanoparticles from Ionic Liquid-Crystal Precursors. Angew. Chem. Int. Ed. 118 (2006) 4285–4288.10.1002/ange.200600929Suche in Google Scholar

Li, R.; Du, J.; Luan, Y.; Xue, Y.; Zou, H.; Zhuang, G.; Li, Z.: Ionic liquid precursor-based synthesis of CuO nanoplates for gas sensing and amperometric sensing applications. Sens. Actuators B-Chem. 168 (2012) 156–164.10.1016/j.snb.2012.03.079Suche in Google Scholar

Tran Qui, D.; Daoud, A.; Mhiri, T.: Structure of Tetraphenylphosphonium Trichlorocuprate. Acta Crystallogr. C45 (1989) 33–35.10.1107/S0108270188009904Suche in Google Scholar

Daoud, A.; Salah, A. B.; Chappert, C.; Renard, J. P.; Cheikhrouhou, A.; Duc, T.; Verdaguer, M.: Crystal structure and magnetic properties of piperazinium hexadichlorocuprate: A new S = 1/2 antiferromagnetic chain with alternating exchange. Phys. Rev. B. 33 (1986) 6253–6260.10.1103/PhysRevB.33.6253Suche in Google Scholar

Received: 2018-03-09
Accepted: 2018-06-06
Published Online: 2018-06-22
Published in Print: 2018-07-26

©2018 A. Abouserie et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Artikel in diesem Heft

  1. Cover and Frontmatter
  2. Crystal structure of (E)-1-(4-(((E)-2-hydroxy-5-methylbenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C17H18N2O2
  3. Crystal structure of 1,3,5,7-tetraazaadamantane-1,3-diium 2,5-dicarboxyterephthalate, C16H18N4O8
  4. Crystal structure of guanidinium tetrabutyl-ammonium 5-hydroxyisophthalate dihydrate, C25H50N4O7
  5. Crystal structure of poly[aqua-(μ2-5-methoxyisophthalate-κ3O,O′:O′′)-(μ2-1,4-bis((1H-1,2,4-triazol-1-yl)methyl)benzene-κ2N:N′)nickel(II), NiC21H20N6O6
  6. Crystal structure of aqua-bis(3,4-dimethoxybenzoato-κ1O)-(2,2′-bipyridine-κ2N,N′)copper(II), C28H26CuN2O9
  7. Crystal structure of catena-poly[aqua-(μ2-(3,5-di(1H-imidazol-1-yl)-pyridine-κ2N:N′)-(μ2-2-(carboxylatomethyl)benzoato-κ2O:O′)] cadmium(II), C20H17CdN5O5
  8. The crystal structure of catena-poly[chlorido-(μ2-5-methyl-1,3,4-thiadiazole-2-thiolato-κ2S:N)mercury(II)], C3H3ClHgN2S2
  9. Crystal structure of (E)-2,4-dichloro-6-(((4-methyl-2-nitrophenyl)imino)methyl)phenol, C14H10Cl2N2O3
  10. Crystal structure of a new polymorph of bis[μ-1,3-bis(diphenylphosphino)propane-κ2P:P′-disilver(I)] bis(tetrafluoroborate), [Ag(dppp)]2(BF4)2, C54H52Ag2B2F8P4
  11. The crystal structure of 2-phenyl-4,6-bis(R-tert-butylsulfonamido)-1,3,5-triazine – ethyl acetate (2/1), C38H58N10O6S4
  12. Crystal structure of 6-amino-8-(2-methoxy-phenyl)-2-methyl-2,3,8,8a-tetrahydro-1H-iso-quinoline-5,7,7-tricarbonitrile monohydrate, C20H21N5O2
  13. Crystal structure of methyl (1-phenylethyl)carbamate, C10H13NO2
  14. Crystal structure of dimethanol-(μ2-squarato-κ2O:O′)-tetrakis(tri-p-tolylphosphane-κP)disilver(I) – methanol (1/2), C92H98Ag2O8P4
  15. Crystal structure of catena-poly[bis(μ2-1,4-bis(triazol-1-ylmethyl)benzene-κ2N:N′)-bis(5-tert-butyl-isophthalate-κO)copper(II)]tetrahydrate, C36H46CuN6O12
  16. Crystal structure of 4-aminopyridinium 4-acetyl-(pyridin-4-yl)-1H-1,2,3-triazol-5-olate monohydrate, C14H16N6O3
  17. Crystal structure of 2-(8-bromo-2-phenylimidazo[1,2-α]pyridin-3-yl)-6,7-dimethyl-3-phenylquinoxaline, C29H21BrN4
  18. Crystal structure of aqua(1-(2-pyridyl)ethanone oxime-κ2N,N′)(1-(2-pyridyl)ethanone oximato-κ2N,N′) nitrate monohydrate, C14H19N5O7Cu
  19. Crystal structure of poly[tetraaqua-(μ4-oxalato-κ4O,O′:O′′,O′′′)-(μ8-benzene-1,2,4,5-tetracarboxylato-κ8O1:O2:O3:O4:O5:O6:O7:O8)yttrium(III)], C6H5O8Y
  20. Crystal structure of bis{catena-poly[(μ2-1,2-bis(4-pyridyl)ethane-κ2N:N′)silver(I)]} diaqua-bis(5-(4-carboxyphenyl)pyridine-2-carboxylato-κ2N,O)-(μ2-1,2-bis(4-pyridyl)ethane-κ2N:N′)disilver(I) octahydrate, C31H35Ag2N4O9
  21. Crystal structure of (E)-N-(2-(benzylamino)-2-oxo-1-(4-oxo-4H-chromen-3-yl)ethyl)-N-(4-bromophenyl)-3-chloroacrylamide hydrate, C27H22BrClN2O5
  22. Crystal structure of catena-poly[octaaqua-bis(μ2-4,6-dicarboxyisophthalate-κ2O:O′)cadmium(II)disodium(I)] dihydrate, C20H28CdNa2O26
  23. Crystal structure of acetonitrile{bis(2-benzimidazolylmethyl)amine-κ3N,N′,N′′}-{maleato-κO}zinc(II) perchlorate - acetonitrile (1/1), C24H24ClN7O8Zn
  24. Crystal structure of 2-amino-4-(3,5-dibromo-4-hydroxyphenyl)-7-methyl-5-oxo-2H,5H-pyrano[4,3-b]pyran-3-carbonitrile, C16H10Br2N2O4
  25. Crystal structure of catena-poly[diaqua-(μ2-3,5-bis(pyridin-4-ylmethoxy)benzoate-κ2N:O) manganese(II)] tetrahydrate [(3,5-bis-(pyridin-4-ylmethoxy)-benzoic-κ1Oκ1N) manganese(II)] trihydrate, C38H42MnN4O14
  26. The crystal structure of 2-carboxybenzaldehyde-2-phenylacetohydrazone, C16H14N2O3
  27. The crystal structure of poly[μ2-aqua-(μ2-2-naphthylamine-1-sulfonato-κ3O,O′:O′′)sodium(I)], C10H10N1O4S1Na
  28. The crystal structure of phthalazin-1(2H)-one, C8H6N2O1
  29. Crystal structure of 3,5-bis(trifluoromethyl)benzyl(Z)-N-(adamantan-1-yl)morpholine-4-carbothioimidate, C24H28F6N2OS
  30. Crystal structure of diazido-bis(μ2-pyridin-2-ylmethanolato-κ2N:O)-bis(pyridin-2-ylmethanolato-κ2N,O)dicobalt(III) – methanol (1/3), C27H35Co2N10O7
  31. Crystal structure of N-[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]-3-(2,2,2-trifluoroethoxy)-2-pyridinesulfonamide, C14H14F3N5O6S
  32. Crystal structure of 1-phenyl-N′-(1-phenyl-5-(thiophen-2-yl)-1H-pyrazole-3-carbonyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carbohydrazide, C28H20N6O2S2
  33. The crystal structure of poly[bis(4-hydroxybenzoato-κO)-(μ2-4,4′-bipyridine-κ2N:N′)copper(II)] hydrate, C24H20N2O7Cu
  34. Crystal structure of poly[μ3-5-(4-(2,6-di(pyridine-2-yl)pyridine-4-yl)phenoxy)isophthalato-κ5O:O′,O′′:N,N′,N′′cobalt(II)], C29H17CoN3O5
  35. Crystal structure of poly[μ3-5-(4-(2,6-di(pyridine-2-yl)pyridine-4-yl)phenoxy)isophthalato-κ6O:O′,O′′:N,N′,N′′)cobalt(II)] C29H17CoN3O5
  36. Crystal structure of diaqua-(acetato-κ3O,O′:O′′)-(μ3-4,6-di(1H-imidazol-1-yl)isophthalato-κ4O:O′:O′′,O′′′)lanthanum(III), C16H15LaN4O8
  37. Synthesis and crystal structure of 6-carboxy-1-(3,5-dicarboxyphenyl)-1H-benzo[d]imidazol-3-ium-5-carboxylate dihydrate, C18H12N2O8
  38. Crystal structure of (E)-2-hydroxybenzaldehyde O-(2-(((E)-(4-(dimethylamino)benzylidene)amino)oxy)ethyl)oxime, C18H21N3O3
  39. Crystal structure of bis{2-((E)-((4-((E)-1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}zinc(II), C32H30N4O4Zn
  40. Crystal structure of bis(9-aminoacridin-10-ium) tetrachloridocuprate(II) monohydrate, C26H24Cl4CuN4O
  41. The crystal structure of 4-tert-butyl-N′-[(E)-(4-fluoro-3-methoxyphenyl)methylidene]benzohydrazide, C19H21F1N2O2
  42. Crystal structure of (E)-3-(3-(5-methyl-1-4-tolyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)-1-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)prop-2-en-1-one, C31H26N8O
  43. Crystal structure of (E)-N′-(4-methoxybenzylidene)-5-methyl-1-(4-tolyl)-1H-1,2,3-triazole-4-carbohydrazide, C19H19N5O2
  44. Crystal structure and molecular packing of O-ethyl (2-chlorophenyl)carbamothioate, C9H10ClNOS
  45. Crystal structure of pyrene-2-carbaldehyde, C17H10O
  46. Crystal structure of (E)-2,4-diiodo-6-(4-methyl-2-nitrostyryl)phenol, C14H10I2N2O3
  47. Crystal structure of (E)-2,4-dichloro-6-(((4-methoxy-2-nitrophenyl)imino)methyl)phenol, C14H10Cl2N2O4
  48. Crystal structure of (E)-2-bromo-4-chloro-6-(4-methoxy-2-nitrostyryl)phenol, C14H10BrClN2O4
  49. Crystal structure of (E)-4,6-diiodo-2-(((4-methoxy-2-nitrophenyl)imino)methyl)-3-methylphenol, C14H10I2N2O4
  50. The crystal structure of 7-bromo-1-cyclopropyl-8-methyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid an intermediate of the ozenoxacin synthesis, C14H12BrNO3
  51. Crystal structure of bis(N-(1-(pyrazin-2-yl)ethylidene)nicotinohydrazonato-κ3N,N′,O)copper(II) C24H20N10O2Cu
  52. Crystal structure of diaqua-dinitrato-k2O,O′((Z)-N-((E)-1-(pyrazin-2-yl)ethylidene)nicotinohydrazonato-k3N,N′,O)europium(II), C12H14N7O9Eu
  53. Crystal structure of ethyl 4-amino-5-(5-methyl-1-(4-tolyl)-1H-1,2,3-triazole-4-carbonyl)-2-(phenylamino)thiophene-3-carboxylate, C24H23N5O3S
  54. The crystal structure of acridin-10-ium2-carboxybenzoate, C21H15NO4
  55. The crystal structure of 3-((phenylamino)methylene)-1,5-dioxaspiro[5.5]undecane-2,4-dione, C16H17N1O4
  56. Crystal structure of 12-chloro-5,6,7,12-tetrahydrodibenzo[c,f][1,5]oxastibocine, C14H12ClOSb
  57. Crystal structure of 4-((1,3-dioxoisoindolin-2-yl)methyl)phenethyl 4-methylbenzenesulfonate, C24H21NO5S
  58. Crystal structure of 3-methyl-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C9H8N2OS
  59. Crystal structure of tert-butyl (2-(4-oxo-2-thioxo-1,4-dihydroquinazolin-3(2H)-yl)ethyl)carbamate, C15H19N3O3S
  60. Crystal structure of ethyl 5-formyl-3,4-dimethylpyrrole-2-carboxylate–1-(propan-2-ylidene)thiosemicarbazide (1/1), C14H22N4O3S
  61. Crystal structure of bis-(N′-(5-ethoxycarbonyl-3,4-dimethyl-pyrrol-2-yl-methylidene)-3-hydroxybenzohydrazide-κ2O,N)copper(II) – dimethylformamide (1/2), C40H50N8O10Cu
  62. Crystal structure of bis(acetato-κO)bis{2-((1H-tetrazol-1-yl)methyl)-1H-benzo[d]imidazole-κN}zinc(II), C22H22N12O4Zn
  63. Crystal structure of 4-phenyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1H-1,2,4-triazole-5(4H)-thione, C17H14N6S
  64. Crystal structure of (Z)-N-(4-nitrophenyl)-3-phenyl-3-(phenylamino)acrylamide, C21H17N3O3
  65. Crystal structure of 1,1′-(pentane-1,5-diyl)bis(3-methyl-1H-imidazol-3-ium)bis(hexafluorophosphate), C13H22F12N4P2
  66. Synthesis and crystal structure of bis(furan-2-ylmethanaminium)-catena-[bis(μ2-phthalato-κ2O:O′)cobalt(II)], C26H24CoN2O10
  67. Crystal structure of methyl (R)-4-(o-chlorobenzoyl)-1-thia-4-azaspiro[4.5]decane-3-carboxylate, C17H20ClNO3S
  68. Crystal structure of 2-[[4-[2-[4-(4-methoxyphenyl)-1-piperazinyl]ethyl]phenyl] methyl]-1H-isoindole-1,3(2H)-dione, C28H29N3O3
  69. The crystal structure of benzenaminium 5,7-dihydroxy-4-oxo-2-phenyl-4H-chromene-8-sulfonate hydrate, C21H19NO8S
  70. Crystal structure of semiconducting potassium poly[(μ2-tetraselenido-κ2Se1:Se4)(μ2-pentaselenido-κ1Se1:Se1)argentate(I)], K3AgSe9
  71. Crystal structure of 2-isopropyl-8-methyl-phenanthrene-3,4-dione, C18H16O2
  72. Crystal structure of 2-isopropyl-8,8-dimethyl-5,6,7,8-tetrahydrophenanthrene-3,4-dione, C19H22O2
  73. Crystal structure of (E)-2-(1-((2-aminophenyl)imino)ethyl)-4-bromophenol, C14H13BrN2O
  74. Crystal structure of 1,1-di(4-cyanophenyl)-2,2-diphenylethene, C28H18N2
  75. Crystal structure of bis(hydroxylamido-κ2O,N)-oxido(1H-pyrazole-3-carboxylato-κ2O,N)vanadium(V), C4H7N4O5V
  76. The crystal structure of In1.2B3O5.6(OH)1.4
  77. The crystal structure of chlorido(2-(1H-pyrazol-3-yl)phenolato-κ2N,O)(2-(1H-pyrazol-3-yl)phenol-κN)copper(II), C18H15ClCuN4O2
  78. Crystal structure of 1-heptylpyridazin-1-ium iodide, C11H19N2I
  79. The crystal structure of N-butylpyridinium bis(μ2-dichlorido)-tetrachloridodicopper(II), C18H28N2Cu2Cl6
  80. Crystal structure of 6-hydroxy-5-((2-hydroxy-6-oxocyclohex-1-en-1-yl)(4-methoxyphenyl)methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, C20H22N2O6
  81. Crystal structure of bis(acetonitrile)-diaqua-dichloridoiron(II), C4H10Cl2N2O2Fe
Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2018-0099/html
Button zum nach oben scrollen