Startseite Crystal structure and molecular packing of O-ethyl (2-chlorophenyl)carbamothioate, C9H10ClNOS
Artikel Open Access

Crystal structure and molecular packing of O-ethyl (2-chlorophenyl)carbamothioate, C9H10ClNOS

  • Chien Ing Yeo und Edward R.T. Tiekink EMAIL logo
Veröffentlicht/Copyright: 7. April 2018

Abstract

C9H10ClNOS, triclinic, P1̄ (no. 2), a = 7.2277(3) Å, b = 9.9791(3) Å, c = 14.7725(7) Å, α = 81.007(3)°, β = 82.268(4)°, γ = 73.210(3)°, V = 1003.01(7) Å3, Z = 4, Rgt(F) = 0.0364, wRref(F2) = 0.0828, T = 100(2) K.

CCDC no.: 1830885

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless prism
Size:0.25 × 0.20 × 0.15 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:5.5 cm−1
Diffractometer, scan mode:SuperNova Dual, ω scans
2θmax, completeness:55.2°, >99%
N(hkl)measured, N(hkl)unique, Rint:14831, 4637, 0.041
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3653
N(param)refined:243
Programs:Agilent programs [1], SHELX [2, 3] , ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Cl10.23116(7)0.89133(5)0.55038(4)0.01979(12)
S10.72551(7)0.49578(5)0.39208(4)0.01832(12)
O10.88124(18)0.69256(13)0.42503(9)0.0160(3)
N10.6098(2)0.68018(16)0.51302(12)0.0158(4)
H1N0.516(2)0.6395(19)0.5275(14)0.019*
C10.7412(3)0.62787(18)0.44502(13)0.0142(4)
C20.6172(3)0.78160(18)0.56952(13)0.0131(4)
C30.4465(3)0.88320(18)0.59369(13)0.0132(4)
C40.4447(3)0.97812(19)0.65309(14)0.0174(4)
H40.32771.04720.66860.021*
C50.6130(3)0.9722(2)0.68978(14)0.0187(4)
H50.61231.03710.73060.022*
C60.7832(3)0.8711(2)0.66676(14)0.0186(4)
H60.89880.86630.69250.022*
C70.7861(3)0.77709(19)0.60657(13)0.0151(4)
H70.90390.70920.59050.018*
C81.0369(3)0.64433(19)0.35395(14)0.0162(4)
H8A0.98280.64740.29530.019*
H8B1.11250.54630.37280.019*
C91.1636(3)0.7427(2)0.34278(15)0.0214(5)
H9A1.08550.83970.32680.032*
H9B1.26790.71680.29370.032*
H9C1.22000.73580.40060.032*
Cl21.28896(7)0.21559(5)0.84908(4)0.02177(13)
S20.75835(7)0.65221(5)0.92706(4)0.01836(12)
O20.66577(19)0.47596(13)0.83298(9)0.0165(3)
N20.8997(2)0.37710(16)0.92427(11)0.0153(3)
H2N0.984(2)0.388(2)0.9574(13)0.018*
C100.7728(3)0.49736(19)0.89268(13)0.0147(4)
C110.9090(3)0.23908(18)0.90591(13)0.0141(4)
C121.0862(3)0.15144(19)0.87418(13)0.0145(4)
C131.1029(3)0.01333(19)0.86231(14)0.0177(4)
H131.2249−0.04610.84190.021*
C140.9424(3)−0.03740(19)0.88013(14)0.0183(4)
H140.9533−0.13180.87150.022*
C150.7639(3)0.04928(19)0.91076(14)0.0180(4)
H150.65290.01420.92240.022*
C160.7480(3)0.18672(19)0.92426(13)0.0161(4)
H160.62650.24520.94610.019*
C170.5246(3)0.59411(19)0.78729(14)0.0173(4)
H17A0.51790.57570.72400.021*
H17B0.56690.68100.78290.021*
C180.3270(3)0.6155(2)0.83930(16)0.0255(5)
H18A0.29110.52640.84960.038*
H18B0.23180.68730.80350.038*
H18C0.32920.64670.89870.038*

Source of materials

2-Chlorophenyl isothiocyanate (Sigma-Aldrich; 2.5 mmol, 0.33 mL) was added to NaOH (Merck; 2.5 mmol, 0.10 g) in MeOH (Merck; 3 mL) and the mixture was stirred at room temperature for 2 h. This was followed by the addition of excess 5 M HCl solution. The resulting mixture was stirred for another 1.5 h. The final product was extracted with chloroform (Merck; 15 mL) and left for evaporation at −4 °C, yielding colourless crystals after 8 weeks. Crystals melted once taken out of the mother liquor and hence, the only characterisation was done by X-ray crystallography.

Experimental details

The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5 Ueq(C). The N-bound H-atom was located in a difference Fourier map but was refined with a distance restraint of N—H = 0.88 ± 0.01 Å, and with Uiso(H) set to 1.2 Ueq(N).

Comment

In connection with the exciting biological potential exhibited by O-alkylthiocarbamates, i.e. R3PAu[SC(OR′)=NR′′], e.g. as anti-cancer [5] and anti-microbial [6] agents, and the dependence of biological activity upon the nature of R, R′ and R′′ ( = alkyl and/or aryl), considerable effort has been made to prepare the alkoxycarbothioamide precursor molecules of the general formula R′OC(=S)N(H)R′′. These molecules, while biologically inert, exhibit interesting structural chemistry in terms of crystal engineering endeavours, in particular the adoption or otherwise of a syn-disposition of the thioamide-N—H and thione-S atoms, and the propensity to form thioamide-N—H⋯S(thione) hydrogen bonds in their crystals [7, 8] . As a continuation of these studies, the crystal and molecular structures of the title compound, EtOC(=S)N(H)C6H4Cl-2, have been investigated.

The molecular structures are shown in the Figure (70% displacement ellipsoids) and features the anticipated [7, 8] syn-disposition of the thione-S and thioamide-N—H atoms in each of the two independent molecules comprising the asymmetric unit. The central residue is strictly planar with the r.m.s. deviation for the S1, O1, N1, C1 atoms from their least-squares plane being 0.0011 Å [0.0000 Å for the S2-containing molecule]. Each molecule is twisted about the N1—C2 [N2—C11] bond with the C1—N1—C2—C3 torsion angle being 141.49(19)°; the S2-molecule is even more twisted with C10—N2—C11—C12 being 129.3(2)°. The dihedral angles between the planes through the SONC and phenyl rings are 46.21(7) and 56.86(6)° for the S1- and S2-molecules, respectively. The other notable conformational difference in the molecules is seen in the relative orientations of the ethoxy groups which best quantified in terms of the C1—O1—C8—C9 and C10—O2—C17—C18 torsion angles of 176.33(16) and −93.4(2)°, respectively, indicating + anti-periplanar and − anti-clinal conformations, respectively.

In the molecular packing, each independent molecule self-associates via thioamide-N—H⋯S(thione) hydrogen bonds with centrosymmetrically-related mates resulting in eight-membered thioamide synthons {⋯HNCS}2 [N1—H1n⋯S1i: 2.566(17) Å and 166.1(17)°, and N2—H2n⋯S2ii: 2.598(17) Å and 164.1(17)° for symmetry operations i: 1 − x, 1 − y, 1 − z and ii: 2 − x, 1 − y, 2 − z]. Globally, the crystal comprises columns of dimeric aggregates parallel to the a-axis. Columns assemble into alternating rows of columns stacked along the c-axis. The interactions connecting the columns are as follows. Specific connections between columns comprising S1-molecules are of the type phenyl-C3—Cl1⋯Cg(C2—C7)iii of 3.5249(10) Å with angle at Cl1 of 83.88(7)° for symmetry operation iii: 1 − x, 2 − y, 1 − z. Similarly, the interactions specific to rows of S2-molecules are phenyl-C14—H⋯S2iv of 2.86 Å and 141°, and π(C11—C16)—π(C11—C16)iii of 3.5880(11) Å for symmetry operation iv: x, −1 + y, z. The connections between rows are of the type phenyl-C17—H17b⋯Cg(C2—C7) of 2.80 Å and 130°.

Such a detailed description of the molecular packing is made as it is observed that the crystals of the title compound and the 2-tolyl derivative [9] are isostructural, i.e. a case of structural mimicry whereby the chemical exchange of substituents/residues such as chloro/methyl does not influence the global molecular packing [10]. In the molecular packing of EtOC(=S)N(H)C6H4Me-2, the global arrangement of molecules mimics that for the 2-Cl derivative and the interactions between columns identified for 2-Cl derivative persist in the packing of the 2-Me structure with one exception, namely the C—Cl⋯π contact. However, in the 2-Me structure, this putative interaction is directly replaced by a C—H⋯π interaction. Hence, in the isostructural crystals, the C—Cl⋯π and C—H⋯π interactions are interchangeable.

Acknowledgements

The University of Malaya’s X-ray laboratory is thanked for the data collection. Sunway University is thanked for support of biological and crystal engineering studies of metal thiocarbamides.

References

Agilent Technologies. CrysAlisPRO. Agilent Technologies, Santa Clara, CA, USA (2012).Suche in Google Scholar

Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Suche in Google Scholar PubMed

Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central

Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.10.1107/S0021889812029111Suche in Google Scholar

Ooi, K. K.; Yeo, C. I.; Mahandaran, T.; Ang, K. P.; Akim, A. M.; Cheah, Y.-K.; Seng, H.-L.; Tiekink, E. R. T.: G2/M cel;cycle arrest on HT-29 cancer cells and toxicity assessment of triphenylphosphanegold(I) carbonimidothioates, Ph3PAu[SC(OR)=NPh], R = Me, Et, and iPr, during zebrafish development. J. Inorg. Biochem. 166 (2017) 173–181.10.1016/j.jinorgbio.2016.11.008Suche in Google Scholar PubMed

Yeo, C. I.; Sim, J.-H.; Khoo, C.-H.; Goh, Z.-J.; Ang, K.-P.; Cheah, Y.-K.; Fairuz, Z. A.; Halim, S. N. B. A.; Ng, S. W.; Seng, H.-L.; Tiekink, E. R. T.: Pathogenic Gram-positive bacteria are highly sensitive to triphenylphosphanegold(O-alkylthiocarbamates), Ph3PAu[SC(OR)=N(p-tolyl)] (R = Me, Et and iPr). Gold Bull. 46 (2013) 145–152.10.1007/s13404-013-0091-zSuche in Google Scholar

Ho, S. Y.; Bettens, R. P. A.; Dakternieks, D.; Duthie, A.; Tiekink, E. R. T.: Prevalence of the thioamide {⋯H—N—C=S}2 synthon – solid-state (X-ray crystallography), solution (NMR) and gas-phase (theoretical) structures of O-methyl-N-aryl-thiocarbamides. CrystEngComm 7 (2005) 682–689.10.1039/b514254gSuche in Google Scholar

Jotani, M. M.; Yeo, C. I.; Tiekink, E. R. T.: A new monoclinic polymorph of N-(3-methylphenyl) ethoxycarbothioamide: crystal structure and Hirshfeld surface analysis. Acta Crystallogr. E73 (2017) 1889–1897.10.1107/S2056989017016280Suche in Google Scholar PubMed PubMed Central

Yeo, C. I.; Tiekink, E. R. T.: Crystal structure of N-(2-methylphenyl)ethoxycarbothioamide, C10H13NOS. Z. Kristallogr. – NCS 233 (2018) 299–301.10.1515/ncrs-2017-0295Suche in Google Scholar

Edwards, M. R.; Jones, W.; Motherwell, W. D. S.; Shields, G. P.: Crystal engineering and chloro-methyl interchange – a CSD analysis. Mol. Cryst. Liq. Cryst. 356 (2001) 337–353.10.1080/10587250108023713Suche in Google Scholar

Received: 2017-12-21
Accepted: 2018-03-19
Published Online: 2018-04-07
Published in Print: 2018-07-26

©2018 published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Artikel in diesem Heft

  1. Cover and Frontmatter
  2. Crystal structure of (E)-1-(4-(((E)-2-hydroxy-5-methylbenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C17H18N2O2
  3. Crystal structure of 1,3,5,7-tetraazaadamantane-1,3-diium 2,5-dicarboxyterephthalate, C16H18N4O8
  4. Crystal structure of guanidinium tetrabutyl-ammonium 5-hydroxyisophthalate dihydrate, C25H50N4O7
  5. Crystal structure of poly[aqua-(μ2-5-methoxyisophthalate-κ3O,O′:O′′)-(μ2-1,4-bis((1H-1,2,4-triazol-1-yl)methyl)benzene-κ2N:N′)nickel(II), NiC21H20N6O6
  6. Crystal structure of aqua-bis(3,4-dimethoxybenzoato-κ1O)-(2,2′-bipyridine-κ2N,N′)copper(II), C28H26CuN2O9
  7. Crystal structure of catena-poly[aqua-(μ2-(3,5-di(1H-imidazol-1-yl)-pyridine-κ2N:N′)-(μ2-2-(carboxylatomethyl)benzoato-κ2O:O′)] cadmium(II), C20H17CdN5O5
  8. The crystal structure of catena-poly[chlorido-(μ2-5-methyl-1,3,4-thiadiazole-2-thiolato-κ2S:N)mercury(II)], C3H3ClHgN2S2
  9. Crystal structure of (E)-2,4-dichloro-6-(((4-methyl-2-nitrophenyl)imino)methyl)phenol, C14H10Cl2N2O3
  10. Crystal structure of a new polymorph of bis[μ-1,3-bis(diphenylphosphino)propane-κ2P:P′-disilver(I)] bis(tetrafluoroborate), [Ag(dppp)]2(BF4)2, C54H52Ag2B2F8P4
  11. The crystal structure of 2-phenyl-4,6-bis(R-tert-butylsulfonamido)-1,3,5-triazine – ethyl acetate (2/1), C38H58N10O6S4
  12. Crystal structure of 6-amino-8-(2-methoxy-phenyl)-2-methyl-2,3,8,8a-tetrahydro-1H-iso-quinoline-5,7,7-tricarbonitrile monohydrate, C20H21N5O2
  13. Crystal structure of methyl (1-phenylethyl)carbamate, C10H13NO2
  14. Crystal structure of dimethanol-(μ2-squarato-κ2O:O′)-tetrakis(tri-p-tolylphosphane-κP)disilver(I) – methanol (1/2), C92H98Ag2O8P4
  15. Crystal structure of catena-poly[bis(μ2-1,4-bis(triazol-1-ylmethyl)benzene-κ2N:N′)-bis(5-tert-butyl-isophthalate-κO)copper(II)]tetrahydrate, C36H46CuN6O12
  16. Crystal structure of 4-aminopyridinium 4-acetyl-(pyridin-4-yl)-1H-1,2,3-triazol-5-olate monohydrate, C14H16N6O3
  17. Crystal structure of 2-(8-bromo-2-phenylimidazo[1,2-α]pyridin-3-yl)-6,7-dimethyl-3-phenylquinoxaline, C29H21BrN4
  18. Crystal structure of aqua(1-(2-pyridyl)ethanone oxime-κ2N,N′)(1-(2-pyridyl)ethanone oximato-κ2N,N′) nitrate monohydrate, C14H19N5O7Cu
  19. Crystal structure of poly[tetraaqua-(μ4-oxalato-κ4O,O′:O′′,O′′′)-(μ8-benzene-1,2,4,5-tetracarboxylato-κ8O1:O2:O3:O4:O5:O6:O7:O8)yttrium(III)], C6H5O8Y
  20. Crystal structure of bis{catena-poly[(μ2-1,2-bis(4-pyridyl)ethane-κ2N:N′)silver(I)]} diaqua-bis(5-(4-carboxyphenyl)pyridine-2-carboxylato-κ2N,O)-(μ2-1,2-bis(4-pyridyl)ethane-κ2N:N′)disilver(I) octahydrate, C31H35Ag2N4O9
  21. Crystal structure of (E)-N-(2-(benzylamino)-2-oxo-1-(4-oxo-4H-chromen-3-yl)ethyl)-N-(4-bromophenyl)-3-chloroacrylamide hydrate, C27H22BrClN2O5
  22. Crystal structure of catena-poly[octaaqua-bis(μ2-4,6-dicarboxyisophthalate-κ2O:O′)cadmium(II)disodium(I)] dihydrate, C20H28CdNa2O26
  23. Crystal structure of acetonitrile{bis(2-benzimidazolylmethyl)amine-κ3N,N′,N′′}-{maleato-κO}zinc(II) perchlorate - acetonitrile (1/1), C24H24ClN7O8Zn
  24. Crystal structure of 2-amino-4-(3,5-dibromo-4-hydroxyphenyl)-7-methyl-5-oxo-2H,5H-pyrano[4,3-b]pyran-3-carbonitrile, C16H10Br2N2O4
  25. Crystal structure of catena-poly[diaqua-(μ2-3,5-bis(pyridin-4-ylmethoxy)benzoate-κ2N:O) manganese(II)] tetrahydrate [(3,5-bis-(pyridin-4-ylmethoxy)-benzoic-κ1Oκ1N) manganese(II)] trihydrate, C38H42MnN4O14
  26. The crystal structure of 2-carboxybenzaldehyde-2-phenylacetohydrazone, C16H14N2O3
  27. The crystal structure of poly[μ2-aqua-(μ2-2-naphthylamine-1-sulfonato-κ3O,O′:O′′)sodium(I)], C10H10N1O4S1Na
  28. The crystal structure of phthalazin-1(2H)-one, C8H6N2O1
  29. Crystal structure of 3,5-bis(trifluoromethyl)benzyl(Z)-N-(adamantan-1-yl)morpholine-4-carbothioimidate, C24H28F6N2OS
  30. Crystal structure of diazido-bis(μ2-pyridin-2-ylmethanolato-κ2N:O)-bis(pyridin-2-ylmethanolato-κ2N,O)dicobalt(III) – methanol (1/3), C27H35Co2N10O7
  31. Crystal structure of N-[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]-3-(2,2,2-trifluoroethoxy)-2-pyridinesulfonamide, C14H14F3N5O6S
  32. Crystal structure of 1-phenyl-N′-(1-phenyl-5-(thiophen-2-yl)-1H-pyrazole-3-carbonyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carbohydrazide, C28H20N6O2S2
  33. The crystal structure of poly[bis(4-hydroxybenzoato-κO)-(μ2-4,4′-bipyridine-κ2N:N′)copper(II)] hydrate, C24H20N2O7Cu
  34. Crystal structure of poly[μ3-5-(4-(2,6-di(pyridine-2-yl)pyridine-4-yl)phenoxy)isophthalato-κ5O:O′,O′′:N,N′,N′′cobalt(II)], C29H17CoN3O5
  35. Crystal structure of poly[μ3-5-(4-(2,6-di(pyridine-2-yl)pyridine-4-yl)phenoxy)isophthalato-κ6O:O′,O′′:N,N′,N′′)cobalt(II)] C29H17CoN3O5
  36. Crystal structure of diaqua-(acetato-κ3O,O′:O′′)-(μ3-4,6-di(1H-imidazol-1-yl)isophthalato-κ4O:O′:O′′,O′′′)lanthanum(III), C16H15LaN4O8
  37. Synthesis and crystal structure of 6-carboxy-1-(3,5-dicarboxyphenyl)-1H-benzo[d]imidazol-3-ium-5-carboxylate dihydrate, C18H12N2O8
  38. Crystal structure of (E)-2-hydroxybenzaldehyde O-(2-(((E)-(4-(dimethylamino)benzylidene)amino)oxy)ethyl)oxime, C18H21N3O3
  39. Crystal structure of bis{2-((E)-((4-((E)-1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}zinc(II), C32H30N4O4Zn
  40. Crystal structure of bis(9-aminoacridin-10-ium) tetrachloridocuprate(II) monohydrate, C26H24Cl4CuN4O
  41. The crystal structure of 4-tert-butyl-N′-[(E)-(4-fluoro-3-methoxyphenyl)methylidene]benzohydrazide, C19H21F1N2O2
  42. Crystal structure of (E)-3-(3-(5-methyl-1-4-tolyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)-1-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)prop-2-en-1-one, C31H26N8O
  43. Crystal structure of (E)-N′-(4-methoxybenzylidene)-5-methyl-1-(4-tolyl)-1H-1,2,3-triazole-4-carbohydrazide, C19H19N5O2
  44. Crystal structure and molecular packing of O-ethyl (2-chlorophenyl)carbamothioate, C9H10ClNOS
  45. Crystal structure of pyrene-2-carbaldehyde, C17H10O
  46. Crystal structure of (E)-2,4-diiodo-6-(4-methyl-2-nitrostyryl)phenol, C14H10I2N2O3
  47. Crystal structure of (E)-2,4-dichloro-6-(((4-methoxy-2-nitrophenyl)imino)methyl)phenol, C14H10Cl2N2O4
  48. Crystal structure of (E)-2-bromo-4-chloro-6-(4-methoxy-2-nitrostyryl)phenol, C14H10BrClN2O4
  49. Crystal structure of (E)-4,6-diiodo-2-(((4-methoxy-2-nitrophenyl)imino)methyl)-3-methylphenol, C14H10I2N2O4
  50. The crystal structure of 7-bromo-1-cyclopropyl-8-methyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid an intermediate of the ozenoxacin synthesis, C14H12BrNO3
  51. Crystal structure of bis(N-(1-(pyrazin-2-yl)ethylidene)nicotinohydrazonato-κ3N,N′,O)copper(II) C24H20N10O2Cu
  52. Crystal structure of diaqua-dinitrato-k2O,O′((Z)-N-((E)-1-(pyrazin-2-yl)ethylidene)nicotinohydrazonato-k3N,N′,O)europium(II), C12H14N7O9Eu
  53. Crystal structure of ethyl 4-amino-5-(5-methyl-1-(4-tolyl)-1H-1,2,3-triazole-4-carbonyl)-2-(phenylamino)thiophene-3-carboxylate, C24H23N5O3S
  54. The crystal structure of acridin-10-ium2-carboxybenzoate, C21H15NO4
  55. The crystal structure of 3-((phenylamino)methylene)-1,5-dioxaspiro[5.5]undecane-2,4-dione, C16H17N1O4
  56. Crystal structure of 12-chloro-5,6,7,12-tetrahydrodibenzo[c,f][1,5]oxastibocine, C14H12ClOSb
  57. Crystal structure of 4-((1,3-dioxoisoindolin-2-yl)methyl)phenethyl 4-methylbenzenesulfonate, C24H21NO5S
  58. Crystal structure of 3-methyl-2,3-dihydro-2-thioxoquinazolin-4(1H)-one, C9H8N2OS
  59. Crystal structure of tert-butyl (2-(4-oxo-2-thioxo-1,4-dihydroquinazolin-3(2H)-yl)ethyl)carbamate, C15H19N3O3S
  60. Crystal structure of ethyl 5-formyl-3,4-dimethylpyrrole-2-carboxylate–1-(propan-2-ylidene)thiosemicarbazide (1/1), C14H22N4O3S
  61. Crystal structure of bis-(N′-(5-ethoxycarbonyl-3,4-dimethyl-pyrrol-2-yl-methylidene)-3-hydroxybenzohydrazide-κ2O,N)copper(II) – dimethylformamide (1/2), C40H50N8O10Cu
  62. Crystal structure of bis(acetato-κO)bis{2-((1H-tetrazol-1-yl)methyl)-1H-benzo[d]imidazole-κN}zinc(II), C22H22N12O4Zn
  63. Crystal structure of 4-phenyl-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)-1H-1,2,4-triazole-5(4H)-thione, C17H14N6S
  64. Crystal structure of (Z)-N-(4-nitrophenyl)-3-phenyl-3-(phenylamino)acrylamide, C21H17N3O3
  65. Crystal structure of 1,1′-(pentane-1,5-diyl)bis(3-methyl-1H-imidazol-3-ium)bis(hexafluorophosphate), C13H22F12N4P2
  66. Synthesis and crystal structure of bis(furan-2-ylmethanaminium)-catena-[bis(μ2-phthalato-κ2O:O′)cobalt(II)], C26H24CoN2O10
  67. Crystal structure of methyl (R)-4-(o-chlorobenzoyl)-1-thia-4-azaspiro[4.5]decane-3-carboxylate, C17H20ClNO3S
  68. Crystal structure of 2-[[4-[2-[4-(4-methoxyphenyl)-1-piperazinyl]ethyl]phenyl] methyl]-1H-isoindole-1,3(2H)-dione, C28H29N3O3
  69. The crystal structure of benzenaminium 5,7-dihydroxy-4-oxo-2-phenyl-4H-chromene-8-sulfonate hydrate, C21H19NO8S
  70. Crystal structure of semiconducting potassium poly[(μ2-tetraselenido-κ2Se1:Se4)(μ2-pentaselenido-κ1Se1:Se1)argentate(I)], K3AgSe9
  71. Crystal structure of 2-isopropyl-8-methyl-phenanthrene-3,4-dione, C18H16O2
  72. Crystal structure of 2-isopropyl-8,8-dimethyl-5,6,7,8-tetrahydrophenanthrene-3,4-dione, C19H22O2
  73. Crystal structure of (E)-2-(1-((2-aminophenyl)imino)ethyl)-4-bromophenol, C14H13BrN2O
  74. Crystal structure of 1,1-di(4-cyanophenyl)-2,2-diphenylethene, C28H18N2
  75. Crystal structure of bis(hydroxylamido-κ2O,N)-oxido(1H-pyrazole-3-carboxylato-κ2O,N)vanadium(V), C4H7N4O5V
  76. The crystal structure of In1.2B3O5.6(OH)1.4
  77. The crystal structure of chlorido(2-(1H-pyrazol-3-yl)phenolato-κ2N,O)(2-(1H-pyrazol-3-yl)phenol-κN)copper(II), C18H15ClCuN4O2
  78. Crystal structure of 1-heptylpyridazin-1-ium iodide, C11H19N2I
  79. The crystal structure of N-butylpyridinium bis(μ2-dichlorido)-tetrachloridodicopper(II), C18H28N2Cu2Cl6
  80. Crystal structure of 6-hydroxy-5-((2-hydroxy-6-oxocyclohex-1-en-1-yl)(4-methoxyphenyl)methyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, C20H22N2O6
  81. Crystal structure of bis(acetonitrile)-diaqua-dichloridoiron(II), C4H10Cl2N2O2Fe
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2017-0422/html
Button zum nach oben scrollen