Abstract
The interaction of dislocations with finely-dispersed incoherent, non-shearable, hard particles governing the strength of oxide dispersion-strengthened (ODS) materials is briefly reviewed with particular emphasis on the basic features of the operating high-temperature mechanisms. The experimental determination of the particle-threshold stress within the yield stress- increment approach as well as its modelling in terms of the “interfacial pinning” mechanism are outlined and exemplified with the austenitic ODS superalloy MA 754 and its ferritic counterparts MA 956 and PM 2000. The available data of very recent high-voltage electron microscopic observations on MA 754 and MA 956 are re-evaluated. In situ straining experiments image moving dislocations under full stress and yield valuable quantitative informations characterizing the controlling (attractive) dislocation – dispersoid particle interaction which are not directly accessible by other methods, such as the (effective) obstacle density; the specific obstacle (particle) strength derived from the relevant interaction parameters; the locally acting shear stress estimated using the measured particle spacings, the curvature of the bowed-out dislocation segments in the stress-applied state, and their line tension calculated within the de Wit-Koehler model. The findings obtained in combination with the results of earlier conventional electron microscopy and those of critically analyzed macroscopic deformation data support convincingly our understanding of the elementary physical mechanisms underlying elevated temperature dispersion strengthening which promises, eventually, to put microstructural-based model description of the yield/creep strength on a more quantitative footing.
References
1 Reppich, B., in: R.W. Cahn, P. Haasen, E.J. Kramer (eds): Materials Science and Technology, Vol. 6 edited by H. Mughrabi: Plastic Deformation and Fracture of Materials, VCH, Weinheim (1993) 311.Suche in Google Scholar
2 Heilmaier, M.; Reppich, B., in: R.S. Mishra et al. (eds.), Proc. TMS Symposium on Creep Behaviour of Advanced Materials for the 21st Century, TMS, Warrendale, PA (1999) 267.Suche in Google Scholar
3 Arzt, E.: Res. Mech. 31 (1991) 399.Suche in Google Scholar
4 Blum, W.; Reppich, B., in: B. Wilshire, R.W. Evans (eds.): Progress in Creep and Fracture, Vol. 3, Pineridge Press, Swansea (1985) 83.Suche in Google Scholar
5 Heilmaier, M.; Reppich, B., in: B. Wilshire, R.W. Evans (eds.), Prod. 5th Int. Conf. on Creep and Fracture of Eng. Mater. and Structures, Pinerigde Press, Swansea (1993) 231.Suche in Google Scholar
6 Heilmaier, M., in: VDI-Fortschrittsberichte, Serie 5, No. 286, VDI-Verlag, Düsseldorf (1993).Suche in Google Scholar
7 Heilmaier, M.;Wetzel, K.;Wunder, J.; Reppich, B., in: H. Oikawa et al. (eds.), Proc. 10th Int. Conf. on the Strength of Metals and Alloys (ICSMA 10), The Japan Institute of Metals, Sendai (1994) 567.Suche in Google Scholar
8 Heilmaier, M.; Wunder, J.; Böhm, U.; Reppich, B.: Comp. Mater. Sci. 7 (1996) 159.10.1016/S0927-0256(96)00075-4Suche in Google Scholar
9 Reppich, B.; Heilmaier, M.; Wunder, J.; Baumeister, H.; Huber, T., in: H. Mughrabi et al. (eds.): Microstructure and Mechanical Properties of Metallic High-Temperature Materials, Wiley-VCH, Weinheim, New York (1999) 509.Suche in Google Scholar
10 Weiße, M.; Blum, W., in: A. Czyrska-Filemonowicz et al. (eds.): Proc. IX. Conf. on Electron Microscopy of Solids, Zakopane (1996) 371.Suche in Google Scholar
11 Herzog, R.; Wasilkowska, A.; Czyrska-Filemonowicz; Schuster, H.: As Ref. [10], p. 379.Suche in Google Scholar
12 Alexander, H., Haasen; P: Sol. State Phys. 22 (1968) 27.10.1016/S0081-1947(08)60031-4Suche in Google Scholar
13 Ilschner, B.: Hochtemperäturplästizität, Springer, Berlin (1973).Suche in Google Scholar
14 Mughrabi, H.: Acta Metall. 31 (1983) 1367.10.1016/0001-6160(83)90007-XSuche in Google Scholar
15 Nix, W.D.; Ilschner, B., in: P. Haasen, V. Gerold, G. Kostorz (eds.): Proc. 5th Int. Conf. on Strength of Metals and Alloys, Pergamon Press, Oxford (1980) 1503.10.1016/B978-1-4832-8412-5.50243-5Suche in Google Scholar
16 Blum, W.: As Ref. [1], p. 359.Suche in Google Scholar
17 Brown, L.; Ham, R.J., in: A. Kelly, R.B. Nicholson (eds.): Strengthening Methods in Crystals, Elsevier, Amsterdam (1971) 9.Suche in Google Scholar
18 Lagneborg, R.; Bergman, B.: Met. Sci. 10 (1976) 20.10.1179/030634576790431462Suche in Google Scholar
19 Threadgill, P.L.;Wilshire, B., in: Proc. Meeting Creep Strength in Steel and High Temperature Alloys, ISI, Sheffield (1972) 8.Suche in Google Scholar
20 Srolowitz, D.; Luton, M.J.; Petkovic-Luton, R.; Barnett, M.D.; Nix, W.D.: Acta Metall. 32 (1984) 1079.10.1016/0001-6160(84)90011-7Suche in Google Scholar
21 Rösler, H.J.; Arzt, E.: Acta Metall. 38 (1990) 671.10.1016/0956-7151(90)90223-4Suche in Google Scholar
22 Reppich, B.: Acta Mater. 46 (1998) 61.10.1016/S1359-6454(97)00234-6Suche in Google Scholar
23 Messerschmidt, U.: Z. Metallkd. 84 (1993) 391.Suche in Google Scholar
24 Messerschmidt, U.; Appel, F.: Krist. Techn. 14 (1979) 1331.10.1002/crat.19790141109Suche in Google Scholar
25 Bartsch, M.; Wasilkowska, A.; Filemonowicz, A.; Messerschmidt, U.: Mater. Sci. Eng. A 272 (1999) 152.10.1016/S0921-5093(99)00471-2Suche in Google Scholar
26 Häußler, D.; Bartsch, M.; Messerschmidt, U.; Reppich, B.: Acta Mater. 49 (2001) 3647.10.1016/S1359-6454(01)00285-3Suche in Google Scholar
27 Kocks, U.F.: Mater. Sci. Eng. 27 (1977) 291.10.1016/0025-5416(77)90212-9Suche in Google Scholar
28 Bartsch, M.: Private communication (2001).Suche in Google Scholar
29 Hermann, W.: Doctoral Thesis, University Erlangen-Nürnberg (1995).Suche in Google Scholar
30 Bayerlein, U.; VDI-Fortschrittsberichte, Serie 5, Nr. 236 (1991).Suche in Google Scholar
31 Scattergood, R.O.; Bacon, D.J.: Philos. Mag. 31 (1975) 179.10.1080/14786437508229295Suche in Google Scholar
32 Hirth, J.P.; Lothe, J.: Theory of Dislocations, Wiley, New York (1982) 837.Suche in Google Scholar
33 Potteboom, H.G.; Neite, G.; Nembach, E.: Mater. Sci. Eng. 60 (1983) 189.10.1016/0025-5416(83)90001-0Suche in Google Scholar
34 deWit, G.; Koehler, J.S.: Phys. Rev. 116 (1959) 1113.10.1103/PhysRev.116.1113Suche in Google Scholar
35 Baither, D.: Unpublished work.Suche in Google Scholar
36 Herzog, R.: Doctoral Thesis, RWTH Aachen (1997).Suche in Google Scholar
37 Mughrabi, H.: Mater. Sci. Eng. A 309–310 (2001) 500.Suche in Google Scholar
© 2002 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles/Aufsätze
- A model for the work hardening of WC–Co “hard metals”
- On the dispersion strengthening mechanisms in ODS materials
- Effect of hydrogen on the mechanical properties of the β titanium alloy Timetal® 21S
- Cyclic deformation behaviour of (α + β) titanium alloys under complex mechanical and physiological loading conditions
- Assessment of the influence of interdendritic shrinkage cavities on the thermo-mechanical fatigue behaviour of the nickel-base superalloy MAR-M247LC
- Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140
- On the possibilities to enhance the fatigue properties of ultrafine-grained metals
- New method of determining stress relaxation behavior in creep machines by controlled unloading
- Creep of binary Ni-rich NiTi shape memory alloys and the influence of pre-creep on martensitic transformations
- Interaction of high-cycle fatigue with high-temperature creep in superalloy single crystals
- A unified description of creep in pure and dispersion-strengthened copper
- A new interpretation of flow-stress measurements of high-purity NiAl below room temperature
- A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities
- Behavior of X-ray peak widths in the Wilkens model of a restrictedly random distribution of dislocations
- Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis
- Werden gewichtsoptimiert konstruierte Bauteile durch die Verwendung von Leichtmetallen wirklich leichter?*)
- Strain-induced martensite formation in metastable austenitic steels with varying carbon content
- Isothermal bainitic transformation in low alloy steels: factors limiting prediction of the resulting material’s properties
- Fatigue damage evolution in a particulate-reinforced metal matrix composite determined by acoustic emission and compliance method
- Microstructure and modification mechanisms of Si phase in as-thixoformed alloy A356
- Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel
- Self-diffusion of 71Ge and 31Si in Si –Ge alloys
- On localised corrosive attack, stress corrosion cracking and corrosion fatigue effects in a hardmetal cutting-tool material
- The internal stress during growth of SiC single crystals
- Notifications/Mitteilungen
- Personal/Personelles
- Books/Bücher
- DGM Conferences/Training
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles/Aufsätze
- A model for the work hardening of WC–Co “hard metals”
- On the dispersion strengthening mechanisms in ODS materials
- Effect of hydrogen on the mechanical properties of the β titanium alloy Timetal® 21S
- Cyclic deformation behaviour of (α + β) titanium alloys under complex mechanical and physiological loading conditions
- Assessment of the influence of interdendritic shrinkage cavities on the thermo-mechanical fatigue behaviour of the nickel-base superalloy MAR-M247LC
- Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140
- On the possibilities to enhance the fatigue properties of ultrafine-grained metals
- New method of determining stress relaxation behavior in creep machines by controlled unloading
- Creep of binary Ni-rich NiTi shape memory alloys and the influence of pre-creep on martensitic transformations
- Interaction of high-cycle fatigue with high-temperature creep in superalloy single crystals
- A unified description of creep in pure and dispersion-strengthened copper
- A new interpretation of flow-stress measurements of high-purity NiAl below room temperature
- A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities
- Behavior of X-ray peak widths in the Wilkens model of a restrictedly random distribution of dislocations
- Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis
- Werden gewichtsoptimiert konstruierte Bauteile durch die Verwendung von Leichtmetallen wirklich leichter?*)
- Strain-induced martensite formation in metastable austenitic steels with varying carbon content
- Isothermal bainitic transformation in low alloy steels: factors limiting prediction of the resulting material’s properties
- Fatigue damage evolution in a particulate-reinforced metal matrix composite determined by acoustic emission and compliance method
- Microstructure and modification mechanisms of Si phase in as-thixoformed alloy A356
- Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel
- Self-diffusion of 71Ge and 31Si in Si –Ge alloys
- On localised corrosive attack, stress corrosion cracking and corrosion fatigue effects in a hardmetal cutting-tool material
- The internal stress during growth of SiC single crystals
- Notifications/Mitteilungen
- Personal/Personelles
- Books/Bücher
- DGM Conferences/Training