Home A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities
Article
Licensed
Unlicensed Requires Authentication

A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities

  • J. Aldazabal and J. Gil Sevillano EMAIL logo
Published/Copyright: January 3, 2022
Become an author with De Gruyter Brill

Abstract

A very simple one-dimensional cellular automaton numerical model of plastic deformation that takes into account the local heterogeneity of strains, stresses and dislocation density has been developed. Results corresponding to an application of the model to low-temperature deformation (no long-range diffusion, no account for the influence of spatial strain rate fluctuations) are presented. The calculated stress – strain curves, mean dislocation density evolution, spatial fluctuations of internal stresses and dislocation density, are qualitatively and semi-quantitatively correct up to large plastic strains. In many ways, the results illustrate the validity of the ideas of Mughrabi’s “composite model”. It is of particular interest that the model predicts a very realistic stage IV after stage III for polycrystalline deformation as well as a convincing Hall-Petch effect for the flow stress – grain size relationship.


Dedicated to Professor Dr. Haël Mughrabi on occasion of his 65th birthday

The work presented in this paper has been made under the sponsorship of the Education, Universities and Research Council of the Basque Government, Project 1203/01.

Prof. J. Gil Sevillano CEIT M. de Lardizabal 15, 20018 San Sebastián, Spain Tel.: +34 943 212 800 Fax: +34 943 213 076

References

1 Kennedy, A.J.: J. Mech. Phys. Solids 1 (1953) 172.10.1016/0022-5096(53)90035-0Search in Google Scholar

2 Brown, L.M.: Metall. Trans. A 22 (1991) 1693.10.1007/BF02646493Search in Google Scholar

3 Kubin, L.P., in: H. Mughrabi (ed.), Materials Science and Engineering, A Comprehensive Treatment, Vol. 6, VCH, Weinheim (1993) 136.Search in Google Scholar

4 Malygin, G.A.: Physics-Uspeekhi 42 (1999) 887.10.1070/PU1999v042n09ABEH000563Search in Google Scholar

5 Makarov., P.V.: Theor. Appl. Fracture Mech. 33 (2000) 23.10.1016/S0167-8442(99)00048-8Search in Google Scholar

6 Dahem, G.S.: Acta Mater. 49 (2001) 2017.10.1016/S1359-6454(01)00089-1Search in Google Scholar

7 Dahem, G.S.: Mater. Sci. Eng. A 319–321 (2001) 765.Search in Google Scholar

8 Ding, R.; Guo, Z.X.: Acta Mater. 49 (2001) 3163.10.1016/S1359-6454(01)00233-6Search in Google Scholar

9 Mughrabi, H.: Acta Metall. 31 (1983) 1367.10.1016/0001-6160(83)90007-XSearch in Google Scholar

10 Mughrabi, H.: S. Afr. J. Phys. 9 (1986) 62.Search in Google Scholar

11 Mughrabi, H.: Mater. Sci. Eng. 85 (1987) 15.10.1016/0025-5416(87)90463-0Search in Google Scholar

12 Mughrabi, H.: Rev. Phys. Appl. 23 (1988) 367.10.1051/rphysap:01988002304036700Search in Google Scholar

13 Mughrabi, H.; Ungár, T.; Kienle, W.; Wilkens, M.: Philos. Mag. 53 (1986) 793.10.1080/01418618608245293Search in Google Scholar

14 Ungár, T.; Mughrabi, H.; Rönnpagel, D.; Wilkens, M.: Acta Metall. 32 (1984) 333.10.1016/0001-6160(84)90106-8Search in Google Scholar

15 Ungár, T.; Toth, L. S.; Illy, J.; Kovács, I.: Acta Metall. 34 (1986) 1257.10.1016/0001-6160(86)90012-XSearch in Google Scholar

16 Mughrabi, H., in: J.B. Bilde-Sorensen, J.V. Carstensen, N. Hansen, D. Juul-Jensen, T. Leffers, W. Pantleon, O.B. Pedersen, G. Winther (eds.), Deformation-Induced Microstructures: Analysis and Relation to Properties, Risø Nat. Laboratory, Roskilde (1999) 417.Search in Google Scholar

17 Mughrabi, H.: Mater. Sci. Eng. A 317 (2001) 171.10.1016/S0921-5093(01)01173-XSearch in Google Scholar

18 Mughrabi, H.: Mater. Sci. Eng. A 319–321 (2001) 139.10.1016/S0921-5093(01)01003-6Search in Google Scholar

19 Gil Sevillano, J.: Mater. Res. Soc. Symp. Proc. 653 (2001) Z 8.5.10.1557/PROC-653-Z8.5.1Search in Google Scholar

20 Ashby, M.F.: Philos. Mag. 21 (1970) 399.10.1080/14786437008238426Search in Google Scholar

21 Gil Sevillano, J.: As Ref. [3], p. 19.Search in Google Scholar

22 Alberdi, J.M.: Ph.D. Thesis, University of Navarra, San Sebástián (1984).Search in Google Scholar

23 Anongba, P.N.B.; Bonneville, J.; Martin, J.L.: Acta Metall. Mater. 41 (1993) 2897.10.1016/0956-7151(93)90104-ZSearch in Google Scholar

24 Mecif, A.: Ph.D. Thesis, Univérsité de Paris XIII (1994).Search in Google Scholar

25 Rollett, A.D.; Kocks, U.F.; Embury, J.D.; Stout, M.D.; Doherty, R.D., in: Strength of Metals and Alloys, Proc. ICSMA 8, Vol.1, Pergamon Press, Oxford (1988) 433.10.1016/B978-0-08-034804-9.50065-6Search in Google Scholar

26 Beaudoin, A.J.; Acharya, A.: Mater. Sci. Eng. A 309–310 (2000) 411.Search in Google Scholar

27 Acharya, A.; Beaudoin, A.J.: J. Mech. Phys. Solids 48 (2000) 2213.10.1016/S0022-5096(00)00013-2Search in Google Scholar

28 Ungár, T.; Zehetbauer, M.: Scripta Mater. 35 (1996) 1467.10.1016/S1359-6462(96)00320-XSearch in Google Scholar

29 Schafler, E.; Zehetbauer, M.; Ungár, T.: Mater. Sci. Eng. A 319 (2001) 220.10.1016/S0921-5093(01)00979-0Search in Google Scholar

30 Székely, F.; Groma, I.; Lendvai, J.: Scripta Mater. 45 (2001) 55.10.1016/S1359-6462(01)00991-5Search in Google Scholar

31 Székely, F.; Groma, I.; Lendvai, J.: Mater. Sci. Eng. A 309–310 (2001) 352.10.1016/S0921-5093(00)01629-4Search in Google Scholar

32 Székely, F.; Groma, I.; Lendvai, J.: Mater. Sci. Eng. A 324 (2002) 179.10.1016/S0921-5093(01)01308-9Search in Google Scholar

33 Hähner, P.: Appl. Phys. A 62 (1996) 473.10.1007/BF01567120Search in Google Scholar

34 Hähner, P.; Zaiser, M.: Acta Mater. 45 (1997) 1067.10.1016/S1359-6454(96)00227-3Search in Google Scholar

35 Avlonitis, M.; Zaiser, M.; Aifantis, E.C.: Probabil. Eng. Mech. 15 (2000) 131.10.1016/S0266-8920(98)00035-6Search in Google Scholar

36 Müller, M.; Zehetbauer, M.; Borbély, A.; Ungár, T.: Scripta Mater. 35 (1996) 1461.10.1016/S1359-6462(96)00319-3Search in Google Scholar

37 Zehetbauer, M.; Schafler, E.; Ungár, T.; Kopacz, I.; Bernstorff, S.: J. Eng. Mater. Technol. 124 (2002) 41.10.1115/1.1421049Search in Google Scholar

38 Beaudoin, A.J.; Acharya, A.; Chen, S.R.; Korzekwa, D.A.; Stout, M.G.: Acta Mater. 48 (2000) 3409.10.1016/S1359-6454(00)00136-1Search in Google Scholar

39 Forest, S.: Mater. Res. Soc. Symp. Proc. 653 (2001) Z8.2.1.Search in Google Scholar

40 Badiola, V.: Licence Thesis, University of Navarra, San Sebástián (2000); see also Ref. [19].Search in Google Scholar

Received: 2002-02-20
Published Online: 2022-01-03

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. A model for the work hardening of WC–Co “hard metals”
  6. On the dispersion strengthening mechanisms in ODS materials
  7. Effect of hydrogen on the mechanical properties of the β titanium alloy Timetal® 21S
  8. Cyclic deformation behaviour of (α + β) titanium alloys under complex mechanical and physiological loading conditions
  9. Assessment of the influence of interdendritic shrinkage cavities on the thermo-mechanical fatigue behaviour of the nickel-base superalloy MAR-M247LC
  10. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140
  11. On the possibilities to enhance the fatigue properties of ultrafine-grained metals
  12. New method of determining stress relaxation behavior in creep machines by controlled unloading
  13. Creep of binary Ni-rich NiTi shape memory alloys and the influence of pre-creep on martensitic transformations
  14. Interaction of high-cycle fatigue with high-temperature creep in superalloy single crystals
  15. A unified description of creep in pure and dispersion-strengthened copper
  16. A new interpretation of flow-stress measurements of high-purity NiAl below room temperature
  17. A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities
  18. Behavior of X-ray peak widths in the Wilkens model of a restrictedly random distribution of dislocations
  19. Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis
  20. Werden gewichtsoptimiert konstruierte Bauteile durch die Verwendung von Leichtmetallen wirklich leichter?*)
  21. Strain-induced martensite formation in metastable austenitic steels with varying carbon content
  22. Isothermal bainitic transformation in low alloy steels: factors limiting prediction of the resulting material’s properties
  23. Fatigue damage evolution in a particulate-reinforced metal matrix composite determined by acoustic emission and compliance method
  24. Microstructure and modification mechanisms of Si phase in as-thixoformed alloy A356
  25. Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel
  26. Self-diffusion of 71Ge and 31Si in Si –Ge alloys
  27. On localised corrosive attack, stress corrosion cracking and corrosion fatigue effects in a hardmetal cutting-tool material
  28. The internal stress during growth of SiC single crystals
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Books/Bücher
  32. DGM Conferences/Training
Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0115/html
Scroll to top button