Home Cyclic deformation behaviour of (α + β) titanium alloys under complex mechanical and physiological loading conditions
Article
Licensed
Unlicensed Requires Authentication

Cyclic deformation behaviour of (α + β) titanium alloys under complex mechanical and physiological loading conditions

  • Berthold Schwilling , Claudia Fleck EMAIL logo and Dietmar Eifler
Published/Copyright: December 7, 2021
Become an author with De Gruyter Brill

Abstract

In the present investigation, the cyclic deformation behaviour of TiAl6V4 and TiAl6Nb7 was characterized in constant-amplitude and load increase tests in laboratory air and quasi-physiological media by mechanical hysteresis and temperature measurements. Microstructural changes were evaluated by scanning and transmission electron microscopy for defined fatigue states and after specimen failure. The cyclic stress –strain curves of the alloys exhibit a cyclic softening and/or hardening behaviour depending on the stress amplitude. In constant-amplitude tests, the alloys show pronounced softening and/or hardening phases. In load increase tests with strain and temperature measurements, estimated values for the endurance limit were determined which correspond well with the results of Woehler tests. In the load increase tests, an influence of the media on the cycle-dependent damage state could not be detected.

Abstract

In der vorliegenden Untersuchung wurde das Wechselverformungsverhalten von TiAl6V4 und TiAl6Nb7 in Einstufen- und Laststeigerungsversuchen an Laborluft und in quasi-physiologischen Medien mit Hilfe der Entwicklung der plastischen Dehnungsamplitude sowie der Probentemperatur charakterisiert. Für definierte Ermüdungszustände und nach Probenbruch wurden mikrostrukturelle Veränderungen mittels Raster- und Transmissionselektronenmikroskopie untersucht. Die zyklischen Spannung –Dehnung-Kurven der Legierungen belegen in Abhängigkeit von der Spannungsamplitude zyklisch ver- und/oder entfestigendes Verhalten. Das Wechselverformungsverhalten der Legierungen ist in Einstufenversuchen durch zyklische Ent- und/oder Verfestigungsvorgänge gekennzeichnet. In Laststeigerungsversuchen wurden mit Dehnungs- und Temperaturmessungen Schätzwerte für die Dauerfestigkeit ermittelt, die gut mit den Ergebnissen aus Wöhlerversuchen korrelieren. Ein Medieneinfluss auf die Schädigungsentwicklung konnte in Laststeigerungsversuchen nicht festgestellt werden.


Dedicated to Professor Dr. Haël Mughrabi on the occasion of his 65th birthday

The authors greatly acknowledge the financial support of the Deutsche Forschungsgemeinschaft DFG. They further thank Dipl.-Ing. R. Hanneforth of Stahlwerk Ergste who supplied the test materials.

Dr.-Ing. Claudia Fleck Institute of Materials Science Gottlieb-Daimler-Str., D-67663 Kaiserslautern, Germany Tel.: +49 631 205 3942 Fax: +49 631 205 2137

6

6 References

1 Fleck, C.; Eifler, D.: Proc. 2. Tagung DVM-Arbeitskreis ‘‘Biowerkstoffe”: Implantologie: Mechanische und klinische Aspekte von Implantaten, DVM, Berlin (2000) 225.Search in Google Scholar

2 Lütjering, G.: Mater. Sci. Eng. A 243 (1998) 32.10.1016/S0921-5093(97)00778-8Search in Google Scholar

3 Wagner, L., in: ASM Handbook Vol. 19: Fatigue and Fracture, ASM International, Materials Park, OH (1996) 837.Search in Google Scholar

4 Chesnutt, J.C.; Rhodes, C.G.; Williams, J.C.: Fractography – Microscopic Cracking Processes, ASTM STP 600, ASTM International, West Conshohocken (1976) 99.10.1520/STP29194SSearch in Google Scholar

5 Bache, M.R.; Evans, W.J.: Mater. Sci. Eng. A 319–321 (2001) 409.10.1016/S0921-5093(00)02034-7Search in Google Scholar

6 Niinomi, M.; Kobayashi, T.; Toriyama, O.; Kawakami, N.; Ishida, Y., Matsuyama, Y.: Metall. Mater. Trans. A 27 (1996) 3925.10.1007/BF02595641Search in Google Scholar

7 Styles, C.M.; Evans, S.L.; Gregson, P.J., in: G. Lütjering, H. Nowack (eds.), Fatigue ’96 – Proc. 6th Int. Fatigue Congress, Vol. III, Pergamon, Berlin (1996) 1799.Search in Google Scholar

8 Lenets, Y.N.; Nicholas, T.: Eng. Fracture Mechanics 60 (1998) 187.10.1016/S0013-7944(98)00010-1Search in Google Scholar

9 Langøy, M.A.; Stock, S.R., in: R.R. Boyer, D. Eylon, G. Lütjering (eds.), Fatigue Behavior of Titanium Alloys, The Minerals, Metals & Materials Society, Warrendale, PA (1999) 245.Search in Google Scholar

10 Moshier, M.A.; Nicholas, T.; Hillberry, B.M.: Int. J. Fatigue 23 (2001) S253.10.1016/S0142-1123(01)00118-9Search in Google Scholar

11 Steele, R.K.; McEvily, A.J.: Eng. Fracture Mechanics 8 (1976) 31.10.1016/0013-7944(76)90075-8Search in Google Scholar

12 Harig, H.; Middeldorf, K.; Müller, K.: HTM 41-5 (1986) 286.Search in Google Scholar

13 Piotrowski, A.; Eifler, D.: Mat. Wiss. und Werkstofft. 26 (1995) 121.10.1002/mawe.19950260305Search in Google Scholar

14 Neal, D.F.; Blenkinsop, P.A.: Acta Metall. 24 (1976) 59.10.1016/0001-6160(76)90147-4Search in Google Scholar

15 Wagner, L., in: J.K. Gregory, H.J. Rack, and D. Eylon (eds.), Surface Performance of Titanium Alloys, TMS-AIME, The Minerals, Metals & Materials Society, Warrendale, PA (1996) 199.Search in Google Scholar

16 Fleck, C.; Eifler, D.: Adv. Eng. Mater. 3 (2001) 500.10.1002/1527-2648(200107)3:7<500::AID-ADEM500>3.0.CO;2-JSearch in Google Scholar

Received: 2002-02-18
Published Online: 2021-12-07
Published in Print: 2021-12-07

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. A model for the work hardening of WC–Co “hard metals”
  6. On the dispersion strengthening mechanisms in ODS materials
  7. Effect of hydrogen on the mechanical properties of the β titanium alloy Timetal® 21S
  8. Cyclic deformation behaviour of (α + β) titanium alloys under complex mechanical and physiological loading conditions
  9. Assessment of the influence of interdendritic shrinkage cavities on the thermo-mechanical fatigue behaviour of the nickel-base superalloy MAR-M247LC
  10. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140
  11. On the possibilities to enhance the fatigue properties of ultrafine-grained metals
  12. New method of determining stress relaxation behavior in creep machines by controlled unloading
  13. Creep of binary Ni-rich NiTi shape memory alloys and the influence of pre-creep on martensitic transformations
  14. Interaction of high-cycle fatigue with high-temperature creep in superalloy single crystals
  15. A unified description of creep in pure and dispersion-strengthened copper
  16. A new interpretation of flow-stress measurements of high-purity NiAl below room temperature
  17. A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities
  18. Behavior of X-ray peak widths in the Wilkens model of a restrictedly random distribution of dislocations
  19. Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis
  20. Werden gewichtsoptimiert konstruierte Bauteile durch die Verwendung von Leichtmetallen wirklich leichter?*)
  21. Strain-induced martensite formation in metastable austenitic steels with varying carbon content
  22. Isothermal bainitic transformation in low alloy steels: factors limiting prediction of the resulting material’s properties
  23. Fatigue damage evolution in a particulate-reinforced metal matrix composite determined by acoustic emission and compliance method
  24. Microstructure and modification mechanisms of Si phase in as-thixoformed alloy A356
  25. Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel
  26. Self-diffusion of 71Ge and 31Si in Si –Ge alloys
  27. On localised corrosive attack, stress corrosion cracking and corrosion fatigue effects in a hardmetal cutting-tool material
  28. The internal stress during growth of SiC single crystals
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Books/Bücher
  32. DGM Conferences/Training
Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0106/html
Scroll to top button