Home On the possibilities to enhance the fatigue properties of ultrafine-grained metals
Article
Licensed
Unlicensed Requires Authentication

On the possibilities to enhance the fatigue properties of ultrafine-grained metals

  • H. W. Höppel EMAIL logo and R. Z. Valiev
Published/Copyright: January 3, 2022
Become an author with De Gruyter Brill

Abstract

Cyclic deformation behaviour of ultrafine-grained (UFG) materials processed by severe plastic deformation is reviewed in the light of possibilities to enhance the fatigue properties of UFG materials. Based on the well-known laws from Coffin-Manson and Basquin the fatigue behaviour of UFG materials for both, the low-cycle fatigue as well as the high-cycle fatigue regimes, are analyzed. The beneficial effects of an annealing heat treatment or a back-pressure modified equal channel angular pressing (ECAP) technique on the fatigue behaviour of UFG materials are demonstrated and critically discussed. In particular, the positive influence of an annealing heat treatment on the fatigue behaviour is explained in terms of an improved cyclic stability of the microstructure after ECAP and of an enhanced ductility. A back-pressure modified ECAP technique was used in order to achieve a ultrafine-grained, high-strength material with increased ductility, which itself is related to a combination of crystallographic slip and grain boundary sliding. The potential of enhancing the fatigue properties of UFG materials by the back-pressure ECAP technique is discussed in the context of the Coffin-Manson and Basquin relations.


Dr. H. W. Höppel Institut für Werkstoffwissenschaften, Lehrstuhl I Martensstr. 5, 91058 Erlangen, Germany Tel.: +49 9131 85 27473 Fax: +49 9131 85 27504

  1. The work of one the authors (R. Z. V.) has been supported in part by the IPP, DOE program (ISTC project # 2070) and the INTAS project #320. The authors are grateful to Mrs. N. Barta-Schreiber for providing unpublished work.

References

1 Mughrabi, H., in: T.C. Lowe, R.Z. Valiev (eds.), Investigations and Applications of Severe Plastic Deformation, Kluwer Academic Publishers, Dordrecht (2000) 241.10.1007/978-94-011-4062-1_31Search in Google Scholar

2 Valiev, R.Z.; Korznikov A.K.; Mulyukov, R.R.: Met. Phys. Metall. 4 (1992) 70.Search in Google Scholar

3 Kaibyshev, O.; Kaibyshev, R.; Salishchev, G.: Mater. Sci. Forum 113–115 (1993) 423.10.4028/www.scientific.net/MSF.113-115.423Search in Google Scholar

4 Mishra, R.S.; Semiatin, S.L.; Suryanarayana, C.; Thadhani, N. (eds.): Proc. Symposium on Ultrafine-grained Materials, TMS Annual Meeting 2000, TMS Publications, Nashville, Tennessee (2000).Search in Google Scholar

5 Segal, V.M.; Reznikov, V.I.; Drobyshevskiy, A.E.; Kopylov, V.I.: Russian Metallurgy (Engl. Transl.) 1 (1981) 115.Search in Google Scholar

6 Valiev, R.Z.; Korznikov, A.V.; Mulyukov, R.R.: Mater. Sci. Eng. A 168 (1993) 141.10.1016/0921-5093(93)90717-SSearch in Google Scholar

7 Valiev, R.Z.; Krasilnikov, N.A.; Tsenev, N.K.: Mater. Sci. Eng A 137 (1991) 35.10.1016/0921-5093(91)90316-FSearch in Google Scholar

8 Segal, V.M.: Mater. Sci. Eng. A 197 (1995) 157.10.1016/0921-5093(95)09705-8Search in Google Scholar

9 Iwahashi, Y.; Horita, Z.; Nemoto, M.; Langdon, T.: Acta Mater. 46 (1998) 3317.10.1016/S1359-6454(97)00494-1Search in Google Scholar

10 Höppel, H.W.; Brunnbauer, M.; Mughrabi, H.; Valiev, R.Z.; Zhilyaev, A.P., in: Werkstoffwoche-Partnerschaft (eds.), Proc. of Materialsweek 2000, http://www.materialsweek.org/proceedings,Munich (2001).Search in Google Scholar

11 Lowe, T.C.; Valiev, R.Z.: JOM 52 (2000) 27.10.1007/s11837-000-0127-8Search in Google Scholar

12 Langdon, T.G.; Furakawa, M.; Nemoto, M.; Horita, Z.: JOM 52 (2000) 30.10.1007/s11837-000-0128-7Search in Google Scholar

13 Kopylov, V.I, in: As Ref. [1], p. 23.Search in Google Scholar

14 Goforth, R.E.; Hartwig, K.T.; Cornwell, L.R., in: As Ref. [1], p. 3.Search in Google Scholar

15 Lowe, T.C.; Valiev, R.Z. (eds.): Investigations and Applications of Severe Plastic Deformation, Kluwer Academic Publishers, Dordrecht (2000).10.1007/978-94-011-4062-1Search in Google Scholar

16 Valiev, R.Z; Islamgaliev, R.K.; Alexandrov, I.V.: Prog. Mater Sci. 45 (2000) 103.10.1016/S0079-6425(99)00007-9Search in Google Scholar

17 Agnew, S.R.; Weertman, J.R.: Mater. Sci. Eng. A 244 (1998) 145.10.1016/S0921-5093(97)00689-8Search in Google Scholar

18 Tavernelli, J.F.; Coffin, L.F.: Trans. Am. Soc. Metals 51 (1959) 438.Search in Google Scholar

19 Agnew, S.R.; Vinogradov, A.Y.; Hashimoto, S.;Weertman, J.R.: J. Electronic Mater. 28 (1999) 1038.10.1007/s11664-999-0181-0Search in Google Scholar

20 Stolyarov, V.V.; Latysh, V.V.; Valiev, R.Z.; Zhu, Y.T.; Lowe, T.C., in: As Ref. [1], p. 367.Search in Google Scholar

21 Thompson, A.W.; Backofen, W.A.: Acta Metall. 19 (1971) 597.10.1016/0001-6160(71)90012-5Search in Google Scholar

22 Lukáš, P.; Kunz, L.: Mater. Sci. Eng. 85 (1987) 67.10.1016/0025-5416(87)90468-XSearch in Google Scholar

23 Brunnbauer, M.: Diploma Thesis, Universität Erlangen-Nürnberg (2000).Search in Google Scholar

24 Mughrabi, H.; Höppel, H.W., in: D. Farkas, H. Kung, M. Mayo, H. v. Swygenhoven, J. Weertman (eds.), Structure and Mechanical Properties of Nanophase Materials – Theory and Computer Simulation vs. Experiment, MRS, Warrendale, PA (2001) B2.1.1.Search in Google Scholar

25 Vinogradov, A.; Hashimoto, S.: Mater. Trans. 42 (2001) 74.10.2320/matertrans.42.74Search in Google Scholar

26 Morrow, J.D., in: Internal Friction, Damping and Cyclic Plasticity, ASTM STP 378, American Society for Testing Materials, Philadelphia, PA (1965) 45.Search in Google Scholar

27 Landgraf, R.W., in: Achievement of High Fatigue Resistance in Metals and Alloys, ASTM STP 467, American Soc. for Testing and Materials, Philadelphia, PA (1970) 3.10.1520/STP26837SSearch in Google Scholar

28 Patlan, V.; Higashi, K.; Kitagawa, K.; Vinogradov, A; Kawazoe, M.: Mater. Sci. Eng. A 319–321 (2001) 587.10.1016/S0921-5093(01)01069-3Search in Google Scholar

29 Vinogradov, A.; Patlan, V.; Kitagawa, K; Hashimoto, S.: Mater Sci. Eng. A 319–321 (2001) 862.10.1016/S0921-5093(01)01057-7Search in Google Scholar

30 Hashimoto, S.; Kaneko, Y.; Kitagawa, K.; Vinogradov, A.; Valiev, R.Z.: Mater. Sci. Forum 312–314 (1999) 593.10.4028/www.scientific.net/MSF.312-314.593Search in Google Scholar

31 Falkner, M.: Diploma Thesis, Universität Erlangen-Nürnberg (1997).Search in Google Scholar

32 Valiev, R.Z.; Kozlov, E.V.; Ivanov, Y. F.; Lian, J.; Nazarov, A.A.; Baudelet, B.: Acta Metall. 42 (1994) 2467.10.1016/0956-7151(94)90326-3Search in Google Scholar

33 Lowe, T.C.; Zhu, Y.T.; Semiatin, S.L.; Berg, D.R., in: As Ref. [1], p. 347.Search in Google Scholar

34 Höppel, H.W.; Zhou, Z.M.; Mughrabi, H.; Valiev, R.Z.: Phil. Mag. A (2002), in press.Search in Google Scholar

35 Barta-Schreiber, N.: Diploma Thesis, Universität Erlangen-Nürnberg (2001).Search in Google Scholar

36 Valiev, R.Z.; Alexandrov, I.V.; Zhu, Y.T.; Lowe, T.C.: JMR 17 (2002) 5.10.1557/JMR.2002.0002Search in Google Scholar

Received: 2002-02-28
Published Online: 2022-01-03

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. A model for the work hardening of WC–Co “hard metals”
  6. On the dispersion strengthening mechanisms in ODS materials
  7. Effect of hydrogen on the mechanical properties of the β titanium alloy Timetal® 21S
  8. Cyclic deformation behaviour of (α + β) titanium alloys under complex mechanical and physiological loading conditions
  9. Assessment of the influence of interdendritic shrinkage cavities on the thermo-mechanical fatigue behaviour of the nickel-base superalloy MAR-M247LC
  10. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140
  11. On the possibilities to enhance the fatigue properties of ultrafine-grained metals
  12. New method of determining stress relaxation behavior in creep machines by controlled unloading
  13. Creep of binary Ni-rich NiTi shape memory alloys and the influence of pre-creep on martensitic transformations
  14. Interaction of high-cycle fatigue with high-temperature creep in superalloy single crystals
  15. A unified description of creep in pure and dispersion-strengthened copper
  16. A new interpretation of flow-stress measurements of high-purity NiAl below room temperature
  17. A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities
  18. Behavior of X-ray peak widths in the Wilkens model of a restrictedly random distribution of dislocations
  19. Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis
  20. Werden gewichtsoptimiert konstruierte Bauteile durch die Verwendung von Leichtmetallen wirklich leichter?*)
  21. Strain-induced martensite formation in metastable austenitic steels with varying carbon content
  22. Isothermal bainitic transformation in low alloy steels: factors limiting prediction of the resulting material’s properties
  23. Fatigue damage evolution in a particulate-reinforced metal matrix composite determined by acoustic emission and compliance method
  24. Microstructure and modification mechanisms of Si phase in as-thixoformed alloy A356
  25. Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel
  26. Self-diffusion of 71Ge and 31Si in Si –Ge alloys
  27. On localised corrosive attack, stress corrosion cracking and corrosion fatigue effects in a hardmetal cutting-tool material
  28. The internal stress during growth of SiC single crystals
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Books/Bücher
  32. DGM Conferences/Training
Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0109/html
Scroll to top button