Home Fatigue damage evolution in a particulate-reinforced metal matrix composite determined by acoustic emission and compliance method
Article
Licensed
Unlicensed Requires Authentication

Fatigue damage evolution in a particulate-reinforced metal matrix composite determined by acoustic emission and compliance method

  • Horst Biermann EMAIL logo , Alexei Vinogradov and Oliver Hartmann
Published/Copyright: December 7, 2021
Become an author with De Gruyter Brill

Abstract

The damage evolution during fatigue of a particulate-reinforced metal matrix composite was investigated experimentally by two methods, i. e., by the measurement of the samples’ stiffness values within individual stress – strain hysteresis loops and by the measurement and evaluation of the acoustic emission during cyclic deformation. Both methods indicate that the first damage occurs during the first loading cycle, in tension as well as in compression. After a short period of a high damage rate which is due to fracture of large particles, a longer range of a smaller damage rate follows, in which smaller particles break. Finally, both methods indicate the growth of the main (and final) fatigue crack.

Abstract

Die Entwicklung der Ermüdungsschädigung eines partikelverstärkten Metallmatrix-Verbundwerkstoffes wurde experimentell mit zwei Methoden, nämlich der Messung der Probensteifigkeit innerhalb einzelner Spannung –Dehnung-Hysteresekurven und mit der Messung und Auswertung der während der zyklischen Verformung auftretenden akustischen Emission, untersucht. Beide Verfahren zeigen, dass die erste Schädigung bereits bei dem ersten Belastungszyklus auftritt, und zwar sowohl im Zug als auch im Druck. Nach einer kurzen Periode einer hohen Schädigungsrate, die auf das Brechen von großen Partikeln zurückgeführt wird, folgt ein längerer Bereich mit einer geringeren Schädigungsrate, in dem kleinere Partikel brechen. Gegen Ende der Ermüdungslebensdauer zeigen beide Verfahren das Wachstum des Ermüdungsrisses.


Dedicated to Professor Dr. Haël Mughrabi on the occasion of his 65th birthday

The authors thank Dr. V. Patlan for his skilful assistance in the course of experiments and software development for AE analysis. The financial support of Deutsche Forschungsgemeinschaft (DFG) within the Gerhard Hess Programme (Bi 418/5-2) is gratefully acknowledged.

Prof. Dr. Horst Biermann Institut für Werkstofftechnik TU Bergakademie Freiberg D-09599 Freiberg, Germany Tel.: +49 3731 39 3564 Fax: +49 3731 39 3703

References

1 Chawla, K.K.: Composite Materials, Springer, New York (1998).10.1007/978-1-4757-2966-5Search in Google Scholar

2 Ellyin, F.; Li, C., in: G. Lütjering, H. Nowack (eds.), Proc. 6th Int. Fatigue Congress (Fatigue 96), Vol. 6, Elsevier, Oxford (1996) 1475.Search in Google Scholar

3 Habel, U.; Christenson, C.M.; Allison, J.E.; Jones, J.W., in: A. Poursartip, K. Street (eds.), Proc. ICCM-10, Woodhead, Cambridge (1995) 597.Search in Google Scholar

4 Hall, J.N.; Jones, J.W.; Sachdev, A.K.: Mater. Sci. Eng. A 183 (1994) 69.10.1016/0921-5093(94)90891-5Search in Google Scholar

5 Vaida, A.R.; Lewandowski, J.J.: Mater. Sci. Eng. A 220 (1996) 85.10.1016/S0921-5093(96)10464-0Search in Google Scholar

6 Ogarevic, V.V.; Stephens, R.I., in: M.R. Mitchell, O. Buck (eds.), Cyclic Deformation, Fracture and Nondestructive Evaluation of Advanced Materials, Vol. 2, ASTM STP 1184, ASTM, Philadelphia, PA, (1994) 134.10.1520/STP18123SSearch in Google Scholar

7 Papakyriacou, M.; Mayer, H.R.; Stanzl-Tschegg, S.E.; Gröschl, M.: Int. J. Fatigue 18 (1996) 475.10.1016/0142-1123(96)00090-4Search in Google Scholar

8 Hartmann, O.: Doctorate Thesis, Universität Erlangen-Nürnberg, (2002).Search in Google Scholar

9 Allison, J.E.; Jones, J.W., in: S. Suresh, A. Mortensen, A. Needle-man (eds.), Fundamentals of Metal Matrix Composites, Butter-worth-Heinemann, Boston, MA, (1993) 269.10.1016/B978-0-08-052371-2.50019-5Search in Google Scholar

10 Li, C.; Ellyin, F.: Mater. Sci. Eng. A 214 (1996) 115.10.1016/0921-5093(96)10250-1Search in Google Scholar

11 Clyne, T.W.; Withers, P.J.: An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge (1993) 218.10.1017/CBO9780511623080.008Search in Google Scholar

12 Lloyd, D.J.: Acta metall. mater. 39 (1991) 59.10.1016/0956-7151(91)90328-XSearch in Google Scholar

13 Singh, P.M.; Lewandowski, J.J.: Metall. Trans. A 24 (1993) 2531.10.1007/BF02646532Search in Google Scholar

14 Kouzeli, M.; Weber, L.; San Marchi, C.; Mortensen, A.: Acta mater. 49 (2001) 497.10.1016/S1359-6454(00)00334-7Search in Google Scholar

15 Biermann, H.; Hartmann, O.; Kemnitzer, M.: Mater. Sci. Eng. A 319–321 (2001) 671.10.1016/S0921-5093(00)02031-1Search in Google Scholar

16 Rabiei, A.; Enoki, M.; Kishi, T.: Mater. Sci. Eng. A 293 (2000) 81.10.1016/S0921-5093(00)01218-1Search in Google Scholar

17 Mummery, P.M.; Derby, B.; Scruby, C.B.: Acta metall. mater. 41 (1993) 1431.10.1016/0956-7151(93)90252-NSearch in Google Scholar

18 Niklas, A.; Froyen, L.; Wevers, M; Delaey, L.: Metall. Mater. Trans. A 26 (1995) 3183.10.1007/BF02669447Search in Google Scholar

19 Buffière, J.-Y.; Maire, E.; Cloetens, P.;. Lormand, G.; Fougères, R.: Acta mater. 47 (1999) 1613.10.1016/S1359-6454(99)00024-5Search in Google Scholar

20 Vinogradov, A.; Biermann, H.; Hartmann, O.: Mater. Sci. Eng. A, to be submitted.Search in Google Scholar

21 Biermann, H.; Hartmann, O.: Härterei-Techn. Mitteilungen 56 (2001) 326.Search in Google Scholar

22 Biermann, H.; Beyer, G.; Mughrabi, H., in: G. Ziegler (ed.), Verbundwerkstoffe und Werkstoffverbunde, DGM Informationsgesellschaft, Oberursel (1996) 197.Search in Google Scholar

23 Maier, H.J.; Rausch, K.; Christ, H.-J., in: G. Lütjering, H. Nowack (eds.), Proc. 6th Int. Fatigue Congress (Fatigue 96), Vol. 6, Elsevier, Oxford (1996) 1469.Search in Google Scholar

24 Vinogradov, A.: J. Acoustic Emission 17 (1999) 1.Search in Google Scholar

25 Vinogradov, A.; Patlan, V.; Hashimoto, S.: Phil. Mag. A 81 (2001) 1427.10.1080/01418610108214356Search in Google Scholar

26 Hartmann, O.; Biermann, H.; Mughrabi, H., in: K.-T. Rie, P.D. Portella (eds.), Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, Elsevier, Amsterdam (1998) 431.10.1016/B978-008043326-4/50074-XSearch in Google Scholar

27 Kemnitzer, M.: Diploma Thesis, Universität Erlangen-Nürnberg, (2000).Search in Google Scholar

28 Poza, P.; Llorca, J.: Metall. Mater. Trans. A 26 (1995) 3131.10.1007/BF02669442Search in Google Scholar

29 Pacheco, T.; Nnayeb-Hashimi, H.; Sallam, H.E.M.: Mater. Sci. Eng. A 247 (1998) 88.10.1016/S0921-5093(97)00766-1Search in Google Scholar

Received: 2002-02-22
Published Online: 2021-12-07
Published in Print: 2021-12-07

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. A model for the work hardening of WC–Co “hard metals”
  6. On the dispersion strengthening mechanisms in ODS materials
  7. Effect of hydrogen on the mechanical properties of the β titanium alloy Timetal® 21S
  8. Cyclic deformation behaviour of (α + β) titanium alloys under complex mechanical and physiological loading conditions
  9. Assessment of the influence of interdendritic shrinkage cavities on the thermo-mechanical fatigue behaviour of the nickel-base superalloy MAR-M247LC
  10. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140
  11. On the possibilities to enhance the fatigue properties of ultrafine-grained metals
  12. New method of determining stress relaxation behavior in creep machines by controlled unloading
  13. Creep of binary Ni-rich NiTi shape memory alloys and the influence of pre-creep on martensitic transformations
  14. Interaction of high-cycle fatigue with high-temperature creep in superalloy single crystals
  15. A unified description of creep in pure and dispersion-strengthened copper
  16. A new interpretation of flow-stress measurements of high-purity NiAl below room temperature
  17. A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities
  18. Behavior of X-ray peak widths in the Wilkens model of a restrictedly random distribution of dislocations
  19. Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis
  20. Werden gewichtsoptimiert konstruierte Bauteile durch die Verwendung von Leichtmetallen wirklich leichter?*)
  21. Strain-induced martensite formation in metastable austenitic steels with varying carbon content
  22. Isothermal bainitic transformation in low alloy steels: factors limiting prediction of the resulting material’s properties
  23. Fatigue damage evolution in a particulate-reinforced metal matrix composite determined by acoustic emission and compliance method
  24. Microstructure and modification mechanisms of Si phase in as-thixoformed alloy A356
  25. Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel
  26. Self-diffusion of 71Ge and 31Si in Si –Ge alloys
  27. On localised corrosive attack, stress corrosion cracking and corrosion fatigue effects in a hardmetal cutting-tool material
  28. The internal stress during growth of SiC single crystals
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Books/Bücher
  32. DGM Conferences/Training
Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0121/html
Scroll to top button