Home Isothermal bainitic transformation in low alloy steels: factors limiting prediction of the resulting material’s properties
Article
Licensed
Unlicensed Requires Authentication

Isothermal bainitic transformation in low alloy steels: factors limiting prediction of the resulting material’s properties

  • Hans Jürgen Maier EMAIL logo and Uwe Ahrens
Published/Copyright: January 3, 2022
Become an author with De Gruyter Brill

Abstract

The present study identifies key material phenomena that limit the predictive capabilities of current approaches employed in modelling the properties of heat treated components. Focus is on aspects related to the isothermal austenite-to-bainite transformation in low alloy steels. Specifically, experimental data are presented on (i) the stress – strain response of austenite prior to transformation, (ii) the magnitude and progress of transformation plasticity and (iii) the effect of externally applied loads on the kinetics of the bainitic phase transformation. The data obtained demonstrate a substantial stress-induced as well as a strain-induced acceleration of the bainitic transformation, which has to be accounted for in modelling. Moreover, stress – strain response of the supercooled austenite was found to be drastically different from that estimated based on the behaviour of stable austenitic steels. The results also point out that transformation plasticity can contribute significantly to distortion of heat treated components. Still, some of the assumptions widely used in modelling this phenomenon are clearly incompatible with the experimentally obtained data.

Abstract

Die sich aus einer Wärmebehandlung von Stählen ergebenden Werkstoff- und Bauteileigenschaften sind durch Anwendung numerischer Methoden vorhersagbar, sofern eine hinreichend genaue Modellierung der ablaufenden Prozesse erfolgt und die erforderlichen Werkstoff-, Prozess- und Phasenumwandlungsdaten zur Verfügung stehen. In diesem Rahmen veranschaulicht die vorliegende Arbeit die Schwierigkeiten bei der Ermittlung der notwendigen Materialdaten und liefert Gründe für die derzeit noch bestehenden Abweichungen zwischen real ermittelten und berechneten Gefüge-, Eigenspannungs- und Verzugsverteilungen an wärmebehandelten Stahlbauteilen. Hierbei wird insbesondere durch die Erfassung der spannungs- und dehnungsbeeinflussten bainitischen Phasenumwandlung gezeigt, dass die bisher verwendeten Materialdaten das bei der Wärmebehandlung von niedrig legierten Stählen tatsächlich vorliegende Zeit –Temperatur –Umwandlungsverhalten nicht korrekt beschreiben. Des Weiteren wird durch den Vergleich von bisher verwendeten mit gemessen Materialdaten verdeutlicht, dass in Bezug auf das Spannungs– Dehnungsverhalten des unterkühlten Austenits vor Umwandlungsbeginn sowie in Bezug auf das Ausmaß der umwandlungsplastischen Dehnungen die bestehenden Abschätzungen und Modelle die tatsächlichen Verhältnisse nicht beschreiben.


Dedicated to Professor Dr. Haël Mughrabi on the occasion of his 65th birthday

The authors would like to acknowledge the support of Dr. G. Besserdich in providing the carburized specimens.

Prof. Dr.-Ing. H.J. Maier Lehrstuhl für Werkstoffkunde Pohlweg 47–49, D-33098 Paderborn, Germany Tel.: +49 5251 60 3856 Fax: +49 5251 60 3854

References

1 Bhadeshia, H.K.D.H.: Mater. Sci. Eng. A 273–275 (1999) 58.10.1016/S0921-5093(99)00289-0Search in Google Scholar

2 Tzitzelkov, I.: Ph.D. Thesis, University Aachen (1973).Search in Google Scholar

3 Braz Fernandes, F.M.: These Docteur des Sciences Physiques, Inst. Nat. Polytechnique de Lorraine (1985).Search in Google Scholar

4 Denis, S.; Simon, A.; Sjöström, S., in: V. Hauk, H. Hougardy, E. Macherauch (eds.), Residual Stresses –Measurement, Calculation, Evaluation, DGM, Oberursel (1990) 99.Search in Google Scholar

5 Ahrens, U.; Besserdich, G.; Maier, H.J.: HTM 55 (2000) 329.Search in Google Scholar

6 Ahrens, U.; Besserdich, G.; Maier, H.J., in: D. Miannay, P. Costa, D. Francois, A. Pineau (eds.), Advances in Mechanical Behaviour, Plasticity and Damage, Euromat 2000, Volume II, Elsevier, Oxford (2000) 817.Search in Google Scholar

7 Ahrens, U.; Maier, H.J., in: G. Lange, M. Pohl (eds.), Werkstoffprüfung – Schadensanalyse und Schadensvermeidung, Wiley-VCH, Weinheim (2001) 239.Search in Google Scholar

8 Richter, F.: Stahleisen-Sonderberichte, Verlag Stahleisen, Düsseldorf, 10 (1983).Search in Google Scholar

9 Matzuzaki, A.; Bhadeshia, H.K.D.H.; Harada, H.: Acta metall. mater. 42 (1994) 1081.10.1016/0956-7151(94)90125-2Search in Google Scholar

10 Gautier, E., in: Courses and Lectures – Mech. Sol. with Phase Changes, No. 368, Int. Centre for Mech. Sci., Wien (1997) 105.10.1007/978-3-7091-2660-8_4Search in Google Scholar

11 Sauthoff, G.; Speller, W.: Z. Metallkd. 72 (1981) 462.Search in Google Scholar

12 Bhadeshia, H.K.D.H.: Personal communication (2001).Search in Google Scholar

13 Patel, J.R.; Cohen, M.: Acta metall. 1 (1953) 531.10.1016/0001-6160(53)90083-2Search in Google Scholar

14 Bhadeshia, H.K.D.H.: J. Mater. Sci. 17 (1982) 383.10.1007/BF00591473Search in Google Scholar

15 Chang, L.C.; Bhadeshia, H.K.D.H.: J. Mater. Sci. 31 (1996) 2145.10.1007/BF00356638Search in Google Scholar

16 Sauthoff, G.: Acta metall. 29 (1981) 637.10.1016/0001-6160(81)90145-0Search in Google Scholar

17 Li, D.Y.; Chen, L.Q.: Acta mater. 45 (1997) 471.10.1016/S1359-6454(96)00207-8Search in Google Scholar

18 Judlin-Denis, S.: These Docteur des Sciences Physiques, Inst. Nat. Polytechnique de Lorraine (1987).Search in Google Scholar

19 Leblond, J.B.; Devaux, J.; Devaux, J.C.: Int. J. Plasticity 5 (1989) 551.10.1016/0749-6419(89)90001-6Search in Google Scholar

20 Greenwood, G.W.; Johnson, R.H.: Proc. Roy. Soc. A 283 (1965) 403.Search in Google Scholar

21 Abrassart, F.: These Docteur des Sciences Physiques, Universite de Nancy (1972).Search in Google Scholar

Received: 2002-02-20
Published Online: 2022-01-03

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. A model for the work hardening of WC–Co “hard metals”
  6. On the dispersion strengthening mechanisms in ODS materials
  7. Effect of hydrogen on the mechanical properties of the β titanium alloy Timetal® 21S
  8. Cyclic deformation behaviour of (α + β) titanium alloys under complex mechanical and physiological loading conditions
  9. Assessment of the influence of interdendritic shrinkage cavities on the thermo-mechanical fatigue behaviour of the nickel-base superalloy MAR-M247LC
  10. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140
  11. On the possibilities to enhance the fatigue properties of ultrafine-grained metals
  12. New method of determining stress relaxation behavior in creep machines by controlled unloading
  13. Creep of binary Ni-rich NiTi shape memory alloys and the influence of pre-creep on martensitic transformations
  14. Interaction of high-cycle fatigue with high-temperature creep in superalloy single crystals
  15. A unified description of creep in pure and dispersion-strengthened copper
  16. A new interpretation of flow-stress measurements of high-purity NiAl below room temperature
  17. A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities
  18. Behavior of X-ray peak widths in the Wilkens model of a restrictedly random distribution of dislocations
  19. Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis
  20. Werden gewichtsoptimiert konstruierte Bauteile durch die Verwendung von Leichtmetallen wirklich leichter?*)
  21. Strain-induced martensite formation in metastable austenitic steels with varying carbon content
  22. Isothermal bainitic transformation in low alloy steels: factors limiting prediction of the resulting material’s properties
  23. Fatigue damage evolution in a particulate-reinforced metal matrix composite determined by acoustic emission and compliance method
  24. Microstructure and modification mechanisms of Si phase in as-thixoformed alloy A356
  25. Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel
  26. Self-diffusion of 71Ge and 31Si in Si –Ge alloys
  27. On localised corrosive attack, stress corrosion cracking and corrosion fatigue effects in a hardmetal cutting-tool material
  28. The internal stress during growth of SiC single crystals
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Books/Bücher
  32. DGM Conferences/Training
Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0120/html
Scroll to top button