Home Technology Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis
Article
Licensed
Unlicensed Requires Authentication

Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis

  • Tamás Ungár EMAIL logo and Jenö Gubicza
Published/Copyright: January 3, 2022

Abstract

The microstructure of three different nanocrystalline materials with hexagonal crystal structure are studied by X-ray diffraction peak profile analysis. The crystallite size distribution and the dislocation structure are determined in plasmathermal silicon nitride powder, sintered tungsten carbide and severely deformed titanium, and are compared with transmission electron microscopy (TEM) results. In the case of the silicon nitride powder, the particle size determined by TEM is in good correlation with the coherently scattering domain size provided by X-rays. In the case of bulk titanium, the crystallite size, given by X-rays, correlates well with the dislocation cell size obtained by TEM. It is found that in tungsten carbide the dominant dislocation slip system is basal, whereas in plastically deformed titanium the basal slip is practically absent with the dominance of pyramidal dislocations, in good correlation with other investigations of the literature.


Dr. T. Ungár Department of General Physiscs P.O. Box 32 H-1518 Budapest, Hungary Tel.: +36 1 372 2801 Fax: +36 1 372 2811

Dedicated to Professor Dr. Haël Mughrabi on the occasion of his 65th birthday

This work was supported by the Hungarian Scientific Research Fund, OTKA, Grant Nos. T031786, T034666 and T029701. J. G. is grateful for the financial support of Magyary Zoltán postdoctoral program of Foundation for Hungarian Higher Education and Research (AMFK).


References

1 Kuzel Jr, R.; Klimanek, P.: J. Appl. Cryst. 22 (1989) 299.10.1107/S0021889889001585Search in Google Scholar

2 Ungár, T.; Borbély, A.: Appl. Phys. Lett. 69 (1996) 3173.10.1063/1.117951Search in Google Scholar

3 Groma, I.: Phys. Rev. B 57 (1998) 7535.10.1103/PhysRevB.57.7535Search in Google Scholar

4 Wu, E.; Mac, A; Gray, E; Kisi, E.H.: J. Appl. Cryst. 31 (1998) 356.10.1107/S002188989701217XSearch in Google Scholar

5 Scardi, P.; Leoni, M.: J. Appl. Cryst. 32 (1999) 671.10.1107/S002188989900374XSearch in Google Scholar

6 Cheary, R.W.; Dooryhee, E.; Lynch, P.; Armstrong, N.; Dligatch, S.:, J. Appl. Cryst. 33 (2000) 1271.10.1107/S0021889800009936Search in Google Scholar

7 Kamminga, J.-D.; Delhez, R.: J. Appl. Cryst. 33 (2000) 1122.10.1107/S0021889800006750Search in Google Scholar

8 Solas, D.E.; Tomé, C.N.; Engler, O.; Wenk, H.R.: Acta Mater. 49 (2001) 3791.10.1016/S1359-6454(01)00261-0Search in Google Scholar

9 Scardi, P.; Leoni, M.: Acta Cryst. A 57 (2001) 604.10.1107/S0108767301008881Search in Google Scholar

10 Ungár, T.; Gubicza, J.; Ribárik, G.; Borbély, A.: J. Appl. Cryst. 34 (2001) 298.10.1107/S0021889801003715Search in Google Scholar

11 Ribárik, G.; Ungár, T.; Gubicza, J.: J. Appl. Cryst. 34 (2001) 669.10.1107/S0021889801011451Search in Google Scholar

12 Williamson, G.K.; Hall, W.H.: Acta Metall. 1 (1953) 22.10.1016/0001-6160(53)90006-6Search in Google Scholar

13 Warren, B.E.; Averbach, B.L.: J. Appl. Phys. 21 (1950) 595.10.1063/1.1699713Search in Google Scholar

14 Warren, B.E.: Progr. Metal Phys. 8 (1959) 147.10.1016/0502-8205(59)90015-2Search in Google Scholar

15 Caglioti, G.; Paoletti, A.; Ricci, F.P.: Nucl. Instrum. 3 (1958) 223.10.1016/0369-643X(58)90029-XSearch in Google Scholar

16 Le Bail, A.: Proc. Accuracy in Powder Diffraction II, NIST Special Publication, 846 (1992) 142.Search in Google Scholar

17 Krivoglaz, M.A.: Theory of X-ray and Thermal Neutron Scattering by Real Crystals, Plenum Press, New York (1996).Search in Google Scholar

18 Wilkens, M.: phys. stat. sol. (a) 2 (1970) 359.10.1002/pssa.19700020224Search in Google Scholar

19 Wilkens, M., in: J.A. Simmons, R. de Wit, R. Bullough (eds.), Fundamental Aspects of Dislocation Theory, Vol. II, Nat. Bur. Stand. (US) Special Publication. No. 317, Washington, DC (1970) 1195.Search in Google Scholar

20 Szépvölgyi, J.; Riley, F.L.; Mohai, I.; Bertoti, I.; Gilbart, E.: J. Mater. Chem. 6 (1996) 1175.10.1039/JM9960601175Search in Google Scholar

21 Stolyarov, V.V.; Zhu, Y.T.; Alexandrov, I.V.; Lowe, T.C.; Valiev, R.Z.: J. Nanosci. Nanotechnol. 1 (2001) 237.10.1166/jnn.2001.034Search in Google Scholar PubMed

22 Wilkens, M; Eckert, H.: Z. Naturforschung a 19 (1964) 459.10.1515/zna-1964-0410Search in Google Scholar

23 Stokes, R: Proc. Phys. Soc. London 61 (1948) 382.10.1088/0959-5309/61/4/311Search in Google Scholar

24 Dragomir, I.C.; Ungár, T.: J. Appl. Cryst., in press.Search in Google Scholar

25 Terwilliger, Ch.D.; Chiang, Y.M.: Acta Metall. Mater. 43 (1995) 319.10.1016/0956-7151(95)90288-0Search in Google Scholar

26 Ungár, T.; Borbély, A.; Goren-Muginstein, G.R.; Berger, S.; Rosen, A.R.: Nanostruct. Mater. 11 (1999) 103.10.1016/S0965-9773(99)00023-9Search in Google Scholar

27 Langford, J.I.; Louër, D.; Scardi, P.: J. Appl. Cryst. 33 (2000) 964.10.1107/S002188980000460XSearch in Google Scholar

28 Gubicza, J.; Szépvölgyi, J.; Mohai, I.; Ribárik, G.; Ungár, T.: J. Mater. Sci. 35 (2000) 3711.10.1023/A:1004800607605Search in Google Scholar

29 Hinds, W.C.: Aerosol Technology: Properties, Behavior and Measurement of Airbone Particles, Wiley, New York (1982).Search in Google Scholar

30 Lippenca, B.C.; Hermanns, M.A.: Powd. Met. 7 (1961) 66.10.1179/pom.1961.4.7.004Search in Google Scholar

31 Gubicza, J.; Ribárik, G.; Goren-Muginstein, G.R.; Rosen A.R.; Ungár, T.: Mater. Sci. Eng. A 309– 310 (2001) 60.10.1016/S0921-5093(00)01666-XSearch in Google Scholar

32 Zhu, Y.T.; Huang, J.Y.; Gubicza, J.; Ungár, T.; Wang, Y.M.; Ma, E; Valiev, R.Z.: Acta Mater., to be submitted.Search in Google Scholar

33 Jones, I.P.; Hutchinson, W.B.: Acta Metall. 29 (1981) 951.10.1016/0001-6160(81)90049-3Search in Google Scholar

34 Gubicza, J.; Dragomir, I.C.; Ribárik, G.; Zhu, Y.T.; Valiev, R.Z.; Ungár, T.: J. Mater. Res., submitted.Search in Google Scholar

35 Kelly, A.; Groves, G.W.: Crystallography and Crystal Defects, Longman, London (1970) 174.Search in Google Scholar

Received: 2002-02-24
Published Online: 2022-01-03

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. A model for the work hardening of WC–Co “hard metals”
  6. On the dispersion strengthening mechanisms in ODS materials
  7. Effect of hydrogen on the mechanical properties of the β titanium alloy Timetal® 21S
  8. Cyclic deformation behaviour of (α + β) titanium alloys under complex mechanical and physiological loading conditions
  9. Assessment of the influence of interdendritic shrinkage cavities on the thermo-mechanical fatigue behaviour of the nickel-base superalloy MAR-M247LC
  10. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140
  11. On the possibilities to enhance the fatigue properties of ultrafine-grained metals
  12. New method of determining stress relaxation behavior in creep machines by controlled unloading
  13. Creep of binary Ni-rich NiTi shape memory alloys and the influence of pre-creep on martensitic transformations
  14. Interaction of high-cycle fatigue with high-temperature creep in superalloy single crystals
  15. A unified description of creep in pure and dispersion-strengthened copper
  16. A new interpretation of flow-stress measurements of high-purity NiAl below room temperature
  17. A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities
  18. Behavior of X-ray peak widths in the Wilkens model of a restrictedly random distribution of dislocations
  19. Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis
  20. Werden gewichtsoptimiert konstruierte Bauteile durch die Verwendung von Leichtmetallen wirklich leichter?*)
  21. Strain-induced martensite formation in metastable austenitic steels with varying carbon content
  22. Isothermal bainitic transformation in low alloy steels: factors limiting prediction of the resulting material’s properties
  23. Fatigue damage evolution in a particulate-reinforced metal matrix composite determined by acoustic emission and compliance method
  24. Microstructure and modification mechanisms of Si phase in as-thixoformed alloy A356
  25. Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel
  26. Self-diffusion of 71Ge and 31Si in Si –Ge alloys
  27. On localised corrosive attack, stress corrosion cracking and corrosion fatigue effects in a hardmetal cutting-tool material
  28. The internal stress during growth of SiC single crystals
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Books/Bücher
  32. DGM Conferences/Training
Downloaded on 27.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0117/html
Scroll to top button