Home Technology Assessment of the influence of interdendritic shrinkage cavities on the thermo-mechanical fatigue behaviour of the nickel-base superalloy MAR-M247LC
Article
Licensed
Unlicensed Requires Authentication

Assessment of the influence of interdendritic shrinkage cavities on the thermo-mechanical fatigue behaviour of the nickel-base superalloy MAR-M247LC

  • Markus Beck , Karl-Heinz Lang EMAIL logo and Detlef Löhe
Published/Copyright: January 3, 2022

Abstract

Precision cast high-temperature components often contain specific imperfections like micropores or microcavities. The influence of the position, size and distribution of such micro cavities as well as of the parameters of the thermomechanical fatigue loading on the lifetime behaviour of the superalloy MAR-M247LC was investigated using two specimen series, containing a high and a low amount of microcavities and a state from which any microcavity was removed by hot isostatic pressing. Thermo-mechanical fatigue (TMF) tests with zero (“in phase”) and – 135° phase shift between temperature and mechanical strain were performed. The different damage behaviour at in-phase and – 135° TMF requires different methods of the assessment of microcavities. For the in-phase loading, they are regarded as cracks and their effect on the local strain distribution is determined by the crack opening displacement. This leads to very good results for both specimen states investigated. For the – 135° cycle, it is taken into account that the microcavities in the core of the specimens increase the loading in the microcavity-free shell of the specimen. This method corresponds closely to the effective damage mechanism and yields good results for both microcavity contents investigated.

Abstract

Hochtemperatur-Bauteile, die im Feingussverfahren hergestellt wurden, enthalten oft herstellungsspezifische Fehlstellen wie Mikroporen oder -lunker. Der Einfluss der Position, der Größe und der Verteilung derartiger Gussfehler auf die Lebensdauer des Werkstoffs MAR-M247LC bei unterschiedlichen thermisch-mechanischen Beanspruchungen wurde anhand zweier Probenserien, die einen niedrigen und einen hohen Mikrolunkergehalt aufwiesen sowie einer heißisostatisch gepressten Variante, die frei von Mikrolunkern war, untersucht. Thermisch-mechanische Ermüdungsversuche (TMF) ohne („in-phase“) und mit – 135° Phasenverschiebung zwischen Temperatur und mechanischer Dehnung wurden dürchgeführt. Das unterschiedliche Versagensverhalten bei diesen Beanspruchungsarten erforderte unterschiedliche Bewertungsverfahren. Bei in-phase Beanspruchung werden die Mikrolunker als Risse betrachtet und ihre Wirkung auf die lokale Dehnungsverteilung mit der Rissuferverschiebung bestimmt. Damit ist die Wirkung der Mikrolunker auf das Lebensdauerverhalten beider untersuchter, mikrolunkerbehafteter Varianten gut zu beschreiben. Bei – 135° TMF wird berücksichtigt, dass die Mikrolunker im Kern einer Probe die Beanspruchung im mikrolunkerfreien Rand erhöht. Dieses Verfahren wird der auftretenden Schädigungsentwicklung gerecht und führt bei beiden untersuchten Mikrolunkergehalten zu guten Ergebnissen.


Dedicated to Professor Dr. Haël Mughrabi on the occasion of his 65th birthday

The investigations were carried out within a project supported by the German “Forschungsvereinigung Verbrennungskraftmaschinen e.V. (FVV)”, Frankfurt, “Arbeitsgemeinschaft industrieller Forschungsvereinigungen “Otto von Guericke“ e.V. (AiF), Köln, and “Bundesministerium für Wirtschaft (BMWi), Berlin (AiF contract no. 11333N). ALSTOM Power AG, MTU Aero Engines, Rolls Royce Deutschland Ltd. & Co. KG and Siemens AG, Geschäftsbereich Power Generation have supported the procuring of the specimens. These financial supports are gratefully acknowledged. The great efforts of Doncasters Precision Casting Bochum GmbH in casting specimens with graded micro cavity contents are deeply appreciated.

Dr.-Ing. Karl-Heinz Lang Institut für Werkstoffkunde I, Universität Karlsruhe (TH) Kaiserstr. 12, D-76131 Karlsruhe, Germany Tel.: +49 721 608 2605 Fax: +49 721 608 7451

References

1 Lecomte-Beckers, J.; Lambrights, M., in: W. Betz (ed.), High Temperature Alloys for Gas Turbines and Other Applications 1986, D. Reindel Publishing Comp., Dordrecht (1986) 145.Search in Google Scholar

2 Bachelet, E., in: D. Coutsouradies et al. (eds.), High Temperature Alloys for Gas Turbines, Applied Science Publisher Ltd, London (1978) 665.Search in Google Scholar

3 Miller, M.P.; McDowell, D.L.; Oehmke, L.T.; Antolovich, S.D., in: H. Sehitoglu (ed.) Thermomechanical Fatigue Behaviour of Materials, ASTM STP 1186, Philadelphia, PA (1993) 35.10.1520/STP24248SSearch in Google Scholar

4 Guedou, J.-Y.; Honnorat, Y.: As ref. [3], p. 157.Search in Google Scholar

5 Beck, M.; Lang, K.-H.; Löhe, D., in: M.R. Bache et al. (eds.), Fatigue 2000 – Fatigue & Durability Assessment of Materials, Components and Structures, Proc. Int. Conference FATIGUE 2000, EMAS Ltd., West Midlands, ISBN 1 901537 16 1 (2000) 239.Search in Google Scholar

6 Bressers, J.; Timm, J.; Williams, S.J.; Bennett, A.; Affeldt, E.E., in: M.J. Verrilli, M.G. Castelli (eds.), Thermomechanical Fatigue Behavior of Materials, Vol. 2, ASTM STP 1263, American Society for Testing and Materials, West Conshohocken, PA (1996) 56.10.1520/STP16446SSearch in Google Scholar

7 Motz, J.M; Achtelik, K; Berger, C.: Giessereiforsch. 43 (1991) 37.Search in Google Scholar

8 Motz, J.M.; Achtelik, K.; Berger, C.: Giessereiforsch. 43 (1991) 53.Search in Google Scholar

9 Hammouda, H.M.; Smith, R.A.; Miller, K.J.: Fatigue Eng. Mater. Struct. 2 (1979) 139.10.1111/j.1460-2695.1979.tb01350.xSearch in Google Scholar

10 Beck, M.: Einfluss von Mikrolunker auf das Werkstoffverhalten von Nickel-Basis-Gusswerkstoffen bei thermisch-mechanischen Ermüdungsbeanspruchungen, Schriftenreihe „Werkstoffwissenschaft und Werkstofftechnik“, Heft IWK-I Nr. 013, ISBN 3-8265-9625-0, Schaker Verlag, Aachen (2001).Search in Google Scholar

11 Biallas, G.: Zyklisches Verformungsverhalten und Mikrostruktur von Sintereisen und ausgewählten Sinterstählen, VDI Verlag, Düsseldorf (1997).Search in Google Scholar

12 Suresh, S.: Fatigue of Materials, Cambridge University Press, Cambridge (1991).Search in Google Scholar

13 Murakami, Y.: Stress Intensity Factors Handbook, Pergamon Press, Oxford, New York, Beijing, Frankfurt (1986).Search in Google Scholar

14 Tomkins, B., in: J. Bressers (ed.), Creep and Fatigue in High Temperature Alloys, Applied Science Publishers Ltd., London (1981) 111.Search in Google Scholar

Received: 2002-02-18
Published Online: 2022-01-03

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. A model for the work hardening of WC–Co “hard metals”
  6. On the dispersion strengthening mechanisms in ODS materials
  7. Effect of hydrogen on the mechanical properties of the β titanium alloy Timetal® 21S
  8. Cyclic deformation behaviour of (α + β) titanium alloys under complex mechanical and physiological loading conditions
  9. Assessment of the influence of interdendritic shrinkage cavities on the thermo-mechanical fatigue behaviour of the nickel-base superalloy MAR-M247LC
  10. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140
  11. On the possibilities to enhance the fatigue properties of ultrafine-grained metals
  12. New method of determining stress relaxation behavior in creep machines by controlled unloading
  13. Creep of binary Ni-rich NiTi shape memory alloys and the influence of pre-creep on martensitic transformations
  14. Interaction of high-cycle fatigue with high-temperature creep in superalloy single crystals
  15. A unified description of creep in pure and dispersion-strengthened copper
  16. A new interpretation of flow-stress measurements of high-purity NiAl below room temperature
  17. A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities
  18. Behavior of X-ray peak widths in the Wilkens model of a restrictedly random distribution of dislocations
  19. Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis
  20. Werden gewichtsoptimiert konstruierte Bauteile durch die Verwendung von Leichtmetallen wirklich leichter?*)
  21. Strain-induced martensite formation in metastable austenitic steels with varying carbon content
  22. Isothermal bainitic transformation in low alloy steels: factors limiting prediction of the resulting material’s properties
  23. Fatigue damage evolution in a particulate-reinforced metal matrix composite determined by acoustic emission and compliance method
  24. Microstructure and modification mechanisms of Si phase in as-thixoformed alloy A356
  25. Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel
  26. Self-diffusion of 71Ge and 31Si in Si –Ge alloys
  27. On localised corrosive attack, stress corrosion cracking and corrosion fatigue effects in a hardmetal cutting-tool material
  28. The internal stress during growth of SiC single crystals
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Books/Bücher
  32. DGM Conferences/Training
Downloaded on 27.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0107/html
Scroll to top button