Home A new interpretation of flow-stress measurements of high-purity NiAl below room temperature
Article
Licensed
Unlicensed Requires Authentication

A new interpretation of flow-stress measurements of high-purity NiAl below room temperature

  • D. Brunner EMAIL logo and P. Gumbsch
Published/Copyright: December 7, 2021
Become an author with De Gruyter Brill

Abstract

The temperature and strain-rate dependence of the critical resolved shear stress (CRSS) of high-purity NiAl single crystals in soft orientation (tensile axis near 〈111〉) was measured in tensile tests with constant strain rate, ε˙ p = 10–4 s–1, between 77 and 325 K. After pre-straining at room temperature, the crystals were plastically deformed by strain increments of Δεp ≈ 0.005 at successively decreasing temperatures. Below 325 K the CRSS on the 〈001〉{011} slip system slowly increases with decreasing temperature, followed by a steeper increase below about 200 K. The strain-rate sensitivity of the CRSS measured by stress-relaxation experiments exhibits comparable behaviour. The parameters for thermally activated dislocation motion, activation volume and activation energy, suggest that different mechanisms control the dislocation motion above and below 200 K. For low stresses, at temperatures above 200 K, an interpretation of the results within the framework of solid solution hardening theory is suggested. Below 200 K the results can be interpreted within the framework of the line-tension model of the kink-pair theory of flow stress. The evaluation of the data yields a kink-pair energy of 2Hk = 0.42 eV, a Peierls stress of 535 MPa, and a Peierls valley distance equal to the lattice constant. These data are generally compatible with a fundamental process of kink-pair formation on {110} or on {100} planes. The results are discussed with respect to recent atomistic modelling of dislocations in NiAl.

Abstract

Die Temperatur- und Geschwindigkeitsabhängigkeit der kritischen Schubspannung (KSS) hochreiner NiAl-Einkristalle in weicher Orientierung (Zugachse nahe 〈111〉) wurde im Zugversuch mit konstanter Dehnrate, ε˙p= 10–4 s–1, zwischen 77 und 325 K gemessen. Nach Vorverformung bei Raumtemperatur wurden die Kristalle in Dehnungsintervallen von Δεp = 0.005 bei sukzessiv aufeinanderfolgenden abnehmenden Temperaturen verformt. Unterhalb 325 K nimmt die für ein 〈001〉{011}-Gleitsystem berechnete KSS langsam mit abnehmender Temperatur zu. Unterhalb ≈200 K erfolgt dann ein starker Anstieg. Die Geschwindigkeitsempfindlichkeit der KSS, gemessen mittels Spannungsrelaxationsexperimenten, zeigt ein vergleichbares Verhalten. Die Parameter für die thermisch aktivierte Versetzungsbewegung (Aktivierungsenergie und Aktivierungsvolumen) legen nahe, dass verschiedene Mechanismen die Versetzungsbewegung oberhalb und unterhalb 200 K bestimmen. Für niedrige Spannungen, bei Temperaturen oberhalb 200 K, lassen sich die Ergebnisse gut im Rahmen der Mischkristallhärtung beschreiben. Unterhalb 200 K lassen sich die Ergebnisse im Rahmen des Linienspannungsmodells der Kinkpaartheorie der KSS beschreiben. Dabei ergibt die Auswertung der Daten eine Kinkpaarenergie 2Hk = 0.42 eV, eine Peierlsspannung von 535 MPa und einen Peierlstalabstand von der Größe der Gitterkonstanten. Diese Ergebnisse sind verträglich mit einer Kinkpaarbildung auf {110}- oder {100}-Ebenen. Die Resultate werden auf der Grundlage jüngerer atomistischer Modellierungen von Versetzungen in NiAl diskutiert.


Dr. Dieter Brunner Max-Planck-Institut für Metallforschung Heisenbergstr. 3, 70569 Stuttgart, Germany Tel.: +49 711 689 3615 Fax: +49 711 689 3522

  1. The authors would like to thank R. Henes and his group for preparing NiAl single crystals, and I. Lakemeyer for specimen preparation, assistance of the measurements, and in the evaluation of the data. Also, they are indebted to Prof. W. Skrotzki (Technische Universität Dresden, Germany) for valuable comments.

References

1 Miracle, D.B.: Acta metall. mater. 41 (1993) 649.10.1016/0956-7151(93)90001-9Search in Google Scholar

2 Mills, M.J.; Miracle, D.B.: Acta metall. mater. 41 (1993) 85.10.1016/0956-7151(93)90341-OSearch in Google Scholar

3 Schroll, R.; Vitek, V.; Gumbsch, P.: Acta mater. 46 (1998) 903.10.1016/S1359-6454(97)00305-4Search in Google Scholar

4 Messerschmidt, U.; Häushälter, R.; Bartsch, M.: Mater. Sci. Eng A234–236 (1997) 822.10.1016/S0921-5093(97)00323-7Search in Google Scholar

5 Takasugi, T.; Kishino, J.; Hanada, S.: Acta metall. mater. 41 (1993) 1009.10.1016/0956-7151(93)90150-QSearch in Google Scholar

6 Brunner, D.; Gumbsch, P.: Mat. Sci. Eng. A 319–321 (2001) 337.10.1016/S0921-5093(00)02009-8Search in Google Scholar

7 Essmann, U.; Henes, R.; Holzwarth, U.; Klopfer, F.; Büchler, E.: phys. stat. sol. (a) 160 (1997) 487.10.1002/1521-396X(199704)160:2<487::AID-PSSA487>3.0.CO;2-4Search in Google Scholar

8 Brunner, D.; Glebovsky, V.: Mat. Lett. 42 (2000) 290.10.1016/S0167-577X(99)00200-1Search in Google Scholar

9 Brunner, D.; Diehl, J.: Z. Metallkd. 83 (1992) 828.Search in Google Scholar

10 Seeger, A.: Phil. Mag. 45 (1954) 771.10.1080/14786440708520489Search in Google Scholar

11 Schoeck, G.: phys. stat. sol. 8 (1965) 499.10.1002/pssb.19650080209Search in Google Scholar

12 Brunner, D.; Diehl. J.: phys.stat.sol. (a) 104 (1987) 145.10.1002/pssa.2211040110Search in Google Scholar

13 Giu, F.; Pratt, P.L.: phys. stat. sol. 6 (1964) 111.10.1002/pssb.19640060108Search in Google Scholar

14 Lahrmann, D.F.; Field, R.D.; Dariola, R.: Mat. Res. Symp. Proc. 213 (1991) 603.10.1557/PROC-213-603Search in Google Scholar

15 Wasilewski, R.J.; Butler, S.R.; Hanlon J.E.: Trans. Metall. Soc. of AIME 236 (1967) 1357.Search in Google Scholar

16 Brunner, D.; Diehl, J.: phys.stat.sol. (a) 125 (1991) 203.10.1002/pssa.2211250117Search in Google Scholar

17 Brunner, D.: Mat. Trans. JIM 41 (2000) 152.10.2320/matertrans1989.41.152Search in Google Scholar

18 Baufeld, B.; Petukov, B.V.; Bartsch, M.; Messerschmidt, U.: Acta mater. 469 (1998) 3077.10.1016/S1359-6454(98)00007-XSearch in Google Scholar

19 Fleischer, R.L.: J. Appl. Phys. 33 (1962) 3504.10.1063/1.1702437Search in Google Scholar

20 Seeger, A., in: P. Veyssiere, L. Kubin, J. Castaing (eds.), Dislocations 1984, C.N.R.S., Paris (1984) 141.Search in Google Scholar

21 Diehl, J.; Seidel, G.P., in: Proc. IAEA Symp. Radiation Damage in Reactor Materials, Vol. 1, IAEA, Vienna (1969) 187.Search in Google Scholar

22 Kramers, H.A.: Physica 7 (1940) 284.10.1016/S0031-8914(40)90098-2Search in Google Scholar

23 Ackermann, F.; Mughrabi, H.; Seeger, A.: Acta metall. 31 (1983) 1353.10.1016/0001-6160(83)90006-8Search in Google Scholar

24 Brunner, D.; Diehl, J.: phys. stat.sol. (a) 124 (1991) 155.10.1002/pssa.2211240114Search in Google Scholar

25 Schaefer, H.-E.; Badura-Gergen, K.: Defect Diff. Forum 143–147 (1997) 193.10.4028/www.scientific.net/DDF.143-147.193Search in Google Scholar

26 Schroll, R.; Gumbsch, P.: phys. stat. sol. (a) 166 (1998) 475.10.1002/(SICI)1521-396X(199803)166:1<475::AID-PSSA475>3.0.CO;2-BSearch in Google Scholar

27 Schroll, R.: Ph.D. Thesis, University of Stuttgart (1997).Search in Google Scholar

28 Seeger, A.: Z. Metallkd. 72 (1981) 369.Search in Google Scholar

29 Werner, M.: phys. stat. sol. (a) 104 (1987) 63.10.1002/pssa.2211040105Search in Google Scholar

30 Caillard, D.: Phil. Mag. A 79 (1999) 723.10.1080/01418619908210327Search in Google Scholar

31 Caillard, D., in: Mat. Res. Soc. Symp Proc. 552 (1999) KK9.9.1.10.1557/PROC-552-KK9.9.1Search in Google Scholar

32 Gumbsch, P.; Schroll, R.: Intermetallies 7 (1999) 447.10.1016/S0966-9795(98)00096-XSearch in Google Scholar

33 Hollang, L.; Hommel, M.; Seeger, A.: phys. stat. sol. (a) 160 (1997) 329.10.1002/1521-396X(199704)160:2<329::AID-PSSA329>3.0.CO;2-OSearch in Google Scholar

Erhalten: 2002-03-14
Online erschienen: 2021-12-07

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. A model for the work hardening of WC–Co “hard metals”
  6. On the dispersion strengthening mechanisms in ODS materials
  7. Effect of hydrogen on the mechanical properties of the β titanium alloy Timetal® 21S
  8. Cyclic deformation behaviour of (α + β) titanium alloys under complex mechanical and physiological loading conditions
  9. Assessment of the influence of interdendritic shrinkage cavities on the thermo-mechanical fatigue behaviour of the nickel-base superalloy MAR-M247LC
  10. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140
  11. On the possibilities to enhance the fatigue properties of ultrafine-grained metals
  12. New method of determining stress relaxation behavior in creep machines by controlled unloading
  13. Creep of binary Ni-rich NiTi shape memory alloys and the influence of pre-creep on martensitic transformations
  14. Interaction of high-cycle fatigue with high-temperature creep in superalloy single crystals
  15. A unified description of creep in pure and dispersion-strengthened copper
  16. A new interpretation of flow-stress measurements of high-purity NiAl below room temperature
  17. A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities
  18. Behavior of X-ray peak widths in the Wilkens model of a restrictedly random distribution of dislocations
  19. Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis
  20. Werden gewichtsoptimiert konstruierte Bauteile durch die Verwendung von Leichtmetallen wirklich leichter?*)
  21. Strain-induced martensite formation in metastable austenitic steels with varying carbon content
  22. Isothermal bainitic transformation in low alloy steels: factors limiting prediction of the resulting material’s properties
  23. Fatigue damage evolution in a particulate-reinforced metal matrix composite determined by acoustic emission and compliance method
  24. Microstructure and modification mechanisms of Si phase in as-thixoformed alloy A356
  25. Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel
  26. Self-diffusion of 71Ge and 31Si in Si –Ge alloys
  27. On localised corrosive attack, stress corrosion cracking and corrosion fatigue effects in a hardmetal cutting-tool material
  28. The internal stress during growth of SiC single crystals
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Books/Bücher
  32. DGM Conferences/Training
Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0114/html
Scroll to top button