Home Werden gewichtsoptimiert konstruierte Bauteile durch die Verwendung von Leichtmetallen wirklich leichter?*)
Article
Licensed
Unlicensed Requires Authentication

Werden gewichtsoptimiert konstruierte Bauteile durch die Verwendung von Leichtmetallen wirklich leichter?*)

  • Peter Neumann EMAIL logo
Published/Copyright: January 3, 2022
Become an author with De Gruyter Brill

Abstract

In der Verkehrstechnik und vielen anderen technischen Bereichen bringt Leichtbau ökonomische und ökologische Vorteile. Daher werden Werkstoffe zunehmend nach ihrem Leichtbaupotential beurteilt. Im Falle der Strukturwerkstoffe, die gewissen Belastungen standhalten müssen, ist allerdings eine Einteilung nach der Dichte („Leichtmetalle‘‘) ungenügend. Der entscheidende Parameter ist vielmehr das Verhältnis von Dichte zu Festigkeit. Im Falle der Biegebeanspruchung wird der Sachverhalt kompliziert, da z. B. die elastische Steifigkeit solcher Bauteile (bei gegebener Länge) nicht nur von ihrem Volumen, sondern auch von ihrer Gestalt abhängt. In dieser Arbeit wird gezeigt, dass der übliche Vergleich von unterschiedlichen Werkstoffen zum Zwecke der Beurteilung ihres Leichtbaupotentials einseitig die weicheren Werkstoffe bevorzugt. Wenn dagegen der Vergleich unter der Bedingung vergleichbarer Außendimensionen gemacht wird, zeigt sich, dass ein und derselbe Parameter für einsinnigen Zug als auch für Biegebeanspruchungen gilt. Damit wird klar, dass das Leichtbaupotential von hochfesten Stählen und Aluminiumlegierungen vergleichbar ist – nicht nur unter einsinnigem Zug, sondern auch unter Biegebeanspruchungen.

Abstract

In transportation and many other technologies weight reduction brings about economical and environmental advantages. Therefore, materials are increasingly judged according to their weight saving potential. In the case of structural materials, which have to withstand given stresses, a classification based on specific gravity alone (“light metals”) falls short. The crucial parameter is the ratio between density and strength. In the case of parts loaded in bending the situation is complicated by the fact that e. g. the elastic stiffness of such parts (of a given length) does not only depend on their volume but also on their shape. It is shown in this paper that the usual comparison of different materials under bending loads to obtain the weight saving potential is strongly shape biased, favoring the more compliant material. If the comparison is made under the condition of equal external dimensions, the same merit parameter, which applies for uni-axial tension, also applies for parts loaded in bending. As a result it is becomes obvious that the weight saving potential of high strength steels and aluminium alloys are comparable – not only in uni-axial tension but also in bending.


Herrn Professor Dr. Haël Mughrabi zu seinem 65. Geburtstag gewidmet

*) Dieser Bericht wurde mit finanzieller Unterstützung der Studiengesellschaft Stahlanwendungen e.V. erstellt und ist in stark gekürzter Form enthalten in dem Forschungsbericht P472 „Der Werkstoff Stahl im Vergleich zu Konkurrenzwerkstoffen in wichtigen Anwendungsgebieten“, November 2000, Verlag und Vertriebsgesellschaft mbH, Düsseldorf, Bestell-Nr. P 472, ISBN 3-934238-30-0.

Prof. Dr. P. Neumann Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Str. 1, D-40237 Düsseldorf, Germany Tel.: +49 211 6792 216 Fax: +49 211 6792 440

Der Studiengesellschaft Stahlanwendungen e.V. möchte ich für die finanzielle Unterstützung dieser Arbeit danken.


Literatur

1 Polakowski, N.H.; E.J. Ripling: Strength and Structure of Engineering Materials, Prentice-Hall, Englewood Cliffs, New Jersey (1966) 360.Search in Google Scholar

2 Landolt-Börnstein, Neue Serie, Gruppe III, Band 11, Springer-Verlag, Berlin (1979) 9 und 39.Search in Google Scholar

3 Ashby, M.F.: Acta metall. mater. 37 (1989) 1273.10.1016/0001-6160(89)90158-2Search in Google Scholar

4 Ashby, M.F.: Acta metall. mater. 39 (1991) 1025.10.1016/0956-7151(91)90189-8Search in Google Scholar

5 Ashby, M.F.: Acta metall. mater. 41 (1993) 1313.10.1016/0956-7151(93)90242-KSearch in Google Scholar

6 Sandstrom, R.: Mater. Design 13 (1992) 195.10.1016/0261-3069(92)90024-CSearch in Google Scholar

7 Cebon, D.; Ashby, M.F.: Metals Mater. 8 (1992) 25.Search in Google Scholar

8 Brechet, Y.; Bassetti, D.; Pechamert, P.: Mater. Sci. Forum 217–222 (1996) 121.10.4028/www.scientific.net/MSF.217-222.121Search in Google Scholar

9 Neumann, P.: Steel Res. 69 (1998) 198.10.1002/srin.199801473Search in Google Scholar

10 Tarrago, J.A.; Canales, J.; Arias, A.: Computers and Structures 52 (1994) 1221.10.1016/0045-7949(94)90187-2Search in Google Scholar

11 Yang, R.J.; Chuang, C.H.: Computers and Structures 52 (1994) 265.10.1016/0045-7949(94)90279-8Search in Google Scholar

Received: 2002-02-18
Published Online: 2022-01-03

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. A model for the work hardening of WC–Co “hard metals”
  6. On the dispersion strengthening mechanisms in ODS materials
  7. Effect of hydrogen on the mechanical properties of the β titanium alloy Timetal® 21S
  8. Cyclic deformation behaviour of (α + β) titanium alloys under complex mechanical and physiological loading conditions
  9. Assessment of the influence of interdendritic shrinkage cavities on the thermo-mechanical fatigue behaviour of the nickel-base superalloy MAR-M247LC
  10. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140
  11. On the possibilities to enhance the fatigue properties of ultrafine-grained metals
  12. New method of determining stress relaxation behavior in creep machines by controlled unloading
  13. Creep of binary Ni-rich NiTi shape memory alloys and the influence of pre-creep on martensitic transformations
  14. Interaction of high-cycle fatigue with high-temperature creep in superalloy single crystals
  15. A unified description of creep in pure and dispersion-strengthened copper
  16. A new interpretation of flow-stress measurements of high-purity NiAl below room temperature
  17. A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities
  18. Behavior of X-ray peak widths in the Wilkens model of a restrictedly random distribution of dislocations
  19. Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis
  20. Werden gewichtsoptimiert konstruierte Bauteile durch die Verwendung von Leichtmetallen wirklich leichter?*)
  21. Strain-induced martensite formation in metastable austenitic steels with varying carbon content
  22. Isothermal bainitic transformation in low alloy steels: factors limiting prediction of the resulting material’s properties
  23. Fatigue damage evolution in a particulate-reinforced metal matrix composite determined by acoustic emission and compliance method
  24. Microstructure and modification mechanisms of Si phase in as-thixoformed alloy A356
  25. Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel
  26. Self-diffusion of 71Ge and 31Si in Si –Ge alloys
  27. On localised corrosive attack, stress corrosion cracking and corrosion fatigue effects in a hardmetal cutting-tool material
  28. The internal stress during growth of SiC single crystals
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Books/Bücher
  32. DGM Conferences/Training
Downloaded on 5.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0118/html
Scroll to top button