Home A unified description of creep in pure and dispersion-strengthened copper
Article
Licensed
Unlicensed Requires Authentication

A unified description of creep in pure and dispersion-strengthened copper

  • Martin Heilmaier EMAIL logo , Heinrich Kestler and Jeffery C. Gibeling
Published/Copyright: January 3, 2022
Become an author with De Gruyter Brill

Abstract

A constitutive model for creep deformation in pure and dispersion-strengthened copper is presented. This description reproduces the characteristic features of steady-state and constant-structure creep with a single set of microstructurally founded parameters. In particular, the stress and temperature dependences of the creep resistance are adequately represented without introducing artificially high and, therefore, physically questionable values for the stress exponent and the activation energy of creep.

Abstract

Es wird ein konstitutives Modell zum Kriechverhalten von reinen und dispersionsgehärteten Metallen vorgestellt. Die Verifizierung an reinem Kupfer und oxiddispersionsgehärtetem Kupfer ergibt, dass die Charakteristika von stätionärem und transientem Kriechen bei konstanter Struktur im wesentlichen mit einem Satz mikrostrukturell begründeter Parameter wiedergegeben werden. Insbesondere wird die Spannungs- und Temperaturabhängigkeit des Kriechwiderstandes korrekt dargestellt.


Dedicated to Professor Dr. Haël Mughrabi on the occasion of his 65th birthday

This paper is based on work supported by the National Science Foundation under Grant DMR-92-08549. One of the authors (M. H.) would like to thank the Alexander von Humboldt Foundation for supporting a stay at UC Davis through the Feodor-Lynen post-contact program. M. H. and H. K. are especially grateful to Prof. Dr. Haël Mughrabi for his dedicated teaching and continuous support throughout their career.

Dr. M. Heilmaier Plansee AG, Technology Center A-6600 Reutte/Tyrolia, Austria Tel.: +43 5672 600 2766 Fax: +43 5672 600 536

References

1 Shewfelt, R.S.W.; Brown. L.M.: Phil. Mag. 35 (1977) 945.10.1080/14786437708232636Search in Google Scholar

2 Blum, W.; Reppich, B., in: B. Wilshire, R.W. Evans (eds.), Creep behavior of crystalline solids, Pineridge Press, Swansea (1985) 83.Search in Google Scholar

3 McLean, M.: Acta Metall. Mater. 33 (1985) 545.10.1016/0001-6160(85)90018-5Search in Google Scholar

4 Arzt, E.: Res Mech. 31 (1991) 399.Search in Google Scholar

5 Gibeling, J.C.; Nix, W.D.: Mater. Sci. Eng. 45 (1980) 123.10.1016/0025-5416(80)90218-9Search in Google Scholar

6 Rösler, J.; Arzt, E.: Acta Metall. 38 (1990) 671.10.1016/0956-7151(90)90223-4Search in Google Scholar

7 Nardone, V.C.; Tien, J.K.: Scripta Metall. 17 (1983) 467.10.1016/0036-9748(83)90333-2Search in Google Scholar

8 Schröder, J.H.; Arzt, E.: Scripta Metall. 19 (1985) 1129.10.1016/0036-9748(85)90022-5Search in Google Scholar

9 Lloyd; G.J.; Martin, J.W.: Mater. Sci. Eng. 46 (1980) 1.10.1016/0025-5416(80)90186-XSearch in Google Scholar

10 Broyles, S.E.; Gibeling, J.C., in: R.J. Arsenault, D. Cole, T. Gross, G. Kostorz, P.K. Liaw, S. Parameswaran, H. Sizek (eds.), The JohannesWeertman Symposium, The Minerals, Metals and Materials Society, Warrendale, PA (1996) 93.Search in Google Scholar

11 Broyles, S.E.; Gibeling. J.C., in: E.M. Taleff, R.K. Mahidhara (eds.), Modeling the mechanical response of structural materials, The Minerals, Metals and Materials Society, Warrendale, PA (1998) 107.Search in Google Scholar

12 Nakayama, G.S.; Gibeling, J.C.: Scripta Metall. 24 (1990) 2031.10.1016/0956-716X(90)90481-USearch in Google Scholar

13 Broyles, S.E.; Gibeling, J.C.: Scripta Metall. Mater. 33 (1995) 767.10.1016/0956-716X(95)00273-XSearch in Google Scholar

14 Broyles, S.E.; Anderson, K.R.; Groza, J.R.; Gibeling, J.C.: Metall. Mater. Trans. A 27 (1996) 1217.10.1007/BF02649859Search in Google Scholar

15 Raj, S.V.; Langdon, T.G.: Acta Metall. 37 (1989) 843.10.1016/0001-6160(89)90011-4Search in Google Scholar

16 Páhutová, M.; Cadek, J.; Ryš, P.: Phil. Mag. 23 (1971) 509.10.1080/14786437108216401Search in Google Scholar

17 Feltham, P.; Meakin, J.D.: Acta Metall. 7 (1959) 614.10.1016/0001-6160(59)90131-2Search in Google Scholar

18 Blum,W., in: R.W. Cahn, P. Haasen, E.J. Kramer (eds.), Materials science and technology, Vol. 6, Wiley-VCH, Weinheim (1992) 359.Search in Google Scholar

19 Biberger, M.; Gibeling, J.C.: Acta Metall. 43 (1995) 3247.10.1016/0956-7151(95)00052-WSearch in Google Scholar

20 Frost, H.J.; Ashby, M.F.: Deformation mechanism maps, Pergamon Press, Oxford (1982).Search in Google Scholar

21 Alexander, H.; Haasen, P.: Solid State Phys. 22 (1968) 27.10.1016/S0081-1947(08)60031-4Search in Google Scholar

22 Ilschner, B.: Hochtemperäturplästizität, Springer-Verlag, Berlin (1968).Search in Google Scholar

23 Heilmaier, M.; Wunder, J.; Böhm, U.; Reppich, B.: Comp. Mater. Sci. 7 (1996) 159.10.1016/S0927-0256(96)00075-4Search in Google Scholar

24 Heilmaier, M.; Reppich, B.: Mater. Sci. Eng. A 234–236 (1997) 501.10.1016/S0921-5093(97)00258-XSearch in Google Scholar

25 Heilmaier, M.: As Ref. [11], p. 137.Search in Google Scholar

26 Friedel, J.: Dislocations, Pergamon Press, Oxford (1964).Search in Google Scholar

27 Mughrabi, H.: Acta Metall. 31 (1983) 1367.10.1016/0001-6160(83)90007-XSearch in Google Scholar

28 Kocks, U.F.; Argon, A.S.; Ashby, M.F.: Prog. Mater. Sci. 19 (1975) 1.10.1016/0079-6425(75)90005-5Search in Google Scholar

29 Koppenaal, T.J.; Kuhlmann-Wilsdorf, D.: Appl. Phys. Lett. 4 (1964) 59.10.1063/1.1753962Search in Google Scholar

Received: 2002-02-18
Published Online: 2022-01-03

© 2002 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles/Aufsätze
  5. A model for the work hardening of WC–Co “hard metals”
  6. On the dispersion strengthening mechanisms in ODS materials
  7. Effect of hydrogen on the mechanical properties of the β titanium alloy Timetal® 21S
  8. Cyclic deformation behaviour of (α + β) titanium alloys under complex mechanical and physiological loading conditions
  9. Assessment of the influence of interdendritic shrinkage cavities on the thermo-mechanical fatigue behaviour of the nickel-base superalloy MAR-M247LC
  10. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140
  11. On the possibilities to enhance the fatigue properties of ultrafine-grained metals
  12. New method of determining stress relaxation behavior in creep machines by controlled unloading
  13. Creep of binary Ni-rich NiTi shape memory alloys and the influence of pre-creep on martensitic transformations
  14. Interaction of high-cycle fatigue with high-temperature creep in superalloy single crystals
  15. A unified description of creep in pure and dispersion-strengthened copper
  16. A new interpretation of flow-stress measurements of high-purity NiAl below room temperature
  17. A mesoscopic plasticity model accounting for spatial fluctuations of plastic strains, internal stresses and dislocation densities
  18. Behavior of X-ray peak widths in the Wilkens model of a restrictedly random distribution of dislocations
  19. Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis
  20. Werden gewichtsoptimiert konstruierte Bauteile durch die Verwendung von Leichtmetallen wirklich leichter?*)
  21. Strain-induced martensite formation in metastable austenitic steels with varying carbon content
  22. Isothermal bainitic transformation in low alloy steels: factors limiting prediction of the resulting material’s properties
  23. Fatigue damage evolution in a particulate-reinforced metal matrix composite determined by acoustic emission and compliance method
  24. Microstructure and modification mechanisms of Si phase in as-thixoformed alloy A356
  25. Influence of size effect on microstructural changes in cyclically deformed polycrystalline nickel
  26. Self-diffusion of 71Ge and 31Si in Si –Ge alloys
  27. On localised corrosive attack, stress corrosion cracking and corrosion fatigue effects in a hardmetal cutting-tool material
  28. The internal stress during growth of SiC single crystals
  29. Notifications/Mitteilungen
  30. Personal/Personelles
  31. Books/Bücher
  32. DGM Conferences/Training
Downloaded on 5.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0113/html
Scroll to top button