Home Technology The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
Article
Licensed
Unlicensed Requires Authentication

The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites

  • Lian Gao , Xihai Jin , Jingguo Li and Jing Sun
Published/Copyright: May 31, 2013

Abstract

Al2O3/TiN nanocomposites were fabricated by hot pressing of powders prepared through ball milling (BM) and in-situ nitridation (PN) methods, respectively. And the mechanical and electrical properties as well as microstructure of the nanocomposites were studied. It was found that TiN showed a strong reinforcing effect in both materials. Due to the difference in the powder preparation method, the Al2O3/TiN nanocomposite from PN powder showed a finer TiN particle size and a more uniform microstructure than the nanocomposite from BM powder. As a result, the former material showed a superior electrical conducting behavior and better mechanical properties.


* Correspondence address: Dr. Lian Gao, Shanghai institute of ceramics, Chinese academy of sciences, Shanghai, China, 200050, Tel.: +862152412718, Fax: +862152413903. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] Y.L.Li, G.J.Qiao, Z.H.Jin: Mater. Res. Bull.37 (2002) 1401.10.1016/S0025-5408(02)00786-9Search in Google Scholar

[2] J.Mukerji, S.Biswas: J. Am. Ceram. Soc.73 (1990) 142.10.1111/j.1151-2916.1990.tb05107.xSearch in Google Scholar

[3] A.Bellosi, G.Portu, S.Guicciardi: J. Eur. Ceram. Soc.10 (1992) 307.10.1016/0955-2219(92)90086-SSearch in Google Scholar

[4] Y.Gogotsi, F.Porz: J. Am. Ceram. Soc.78 (1992) 2251.10.1111/j.1151-2916.1992.tb04492.xSearch in Google Scholar

[5] Z.Rak, J.Czechowski: J. Eur. Ceram. Soc.18 (1998) 373.10.1016/S0955-2219(97)00131-3Search in Google Scholar

[6] A.Bellosi, S.Guicciardi, A.Tampieri: J. Eur. Ceram. Soc.9 (1992) 83.10.1016/0955-2219(92)90049-JSearch in Google Scholar

[7] M.Tajika, H.Matsubara, W.Rafaniello: Mater. Lett.41 (1999) 139.10.1016/S0167-577X(99)00120-2Search in Google Scholar

[8] K.Niihara: J. Ceram. Soc. Jpn.99 (1991) 974.10.2109/jcersj.99.974Search in Google Scholar

[9] R.Matsuki, H.Ueda, T.Takenouchi, A.Nakahira, K.Niihara: Powder and Powder Metallurgy of Japan38 (1991) 365.10.2497/jjspm.38.365Search in Google Scholar

[10] S.Oh, M.Sando, K.Niihara: J. Am. Ceram. Soc.81 (1998) 3013.10.1111/j.1151-2916.1998.tb02729.xSearch in Google Scholar

[11] J.Li, L.Gao, J.Guo: J. Am. Ceram. Soc.84 (2001) 3045.10.1111/j.1151-2916.2001.tb01136.xSearch in Google Scholar

Received: 2005-10-13
Accepted: 2006-1-20
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Downloaded on 22.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.101287/html
Scroll to top button