Home Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
Article
Licensed
Unlicensed Requires Authentication

Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature

  • A. Cuneyt Tas
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

An electroless, room temperature solution growth method of depositing 50 to 150 μm thick, well-crystallized brushite (CaHPO4 · 2H2O, DCPD, dicalcium phosphate dihydrate) layers on the surface of an implantable medical device, such as a titanium alloy (Ti–6Al–4V) substrate, was developed. High ionic strength (189 to 609 mM) solutions with a Ca/P molar ratio of 2.50 and a pH value between 4.70 and 6.10 were prepared by dissolving appropriate quantities of CaCl2 · 2H2O, NaH2PO4, NaHCO3, and NaCl in deionized water. Surface-etched Ti–6Al–4V substrates were simply soaked in the solutions from 24 to 72 hours at room temperature. Elongated CaHPO4 · 2H2O crystals were in-situ- grown on the entire surfaces of the etched Ti–6Al–4V substrates.


* Correspondence address: Dr. A. Cuneyt Tas, 2. Cadde, 25. Sokak, No: 21 Batikent, Ankara 06370, Turkey Tel.: 903122507563. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] L.Winand: Ann. Chim.6 (1961) 941.Search in Google Scholar

[2] Y.E.Greish, P.W.Brown: J. Biomed. Mater. Res. Appl. Biomat.B67 (2003) 632.10.1002/jbm.b.10056Search in Google Scholar

[3] R.Z.LeGeros, J.P.LeGeros, in: L.L.Hench, J.Wilson (Eds.), An Introduction to Bioceramics, World Scientific Publishing Co, London (1993) 144.Search in Google Scholar

[4] Y.T.Wu, M.J.Glimcher, C.Rey, J.L.Ackerman: J. Mol. Biol.244 (1994) 423.10.1006/jmbi.1994.1740Search in Google Scholar

[5] C.K.Loong, C.Rey, L.T.Kuhn, C.Combes, Y.Wu, S.H.Chen, M.J.Glimcher: Bone26 (2000) 599.10.1016/S8756-3282(00)00273-8Search in Google Scholar

[6] T.Kokubo: Acta Mater.46 (1998) 2519.10.1016/S1359-6454(98)80036-0Search in Google Scholar

[7] G.L.Lange, K.Donath: Biomaterials10 (1989) 121.10.1016/0142-9612(89)90044-6Search in Google Scholar

[8] C.Y.Yang, R.M.Lin, B.C.Wang, T.M.Lee, E.Chang, Y.S.Hang, P.Q.Chen: J. Biomed. Mater. Res.37 (1997) 335.10.1002/(SICI)1097-4636(19971205)37:3<335::AID-JBM4>3.0.CO;2-MSearch in Google Scholar

[9] M.Yoshinari, T.Hayakawa, J.G.C.Wolke, K.Nemoto, J.A.Jansen: J. Biomed. Mater. Res.37 (1997) 60.10.1002/(SICI)1097-4636(199710)37:1<60::AID-JBM8>3.0.CO;2-HSearch in Google Scholar

[10] W.Weng, J.L.Baptista: Biomaterials19 (1998) 125.10.1016/S0142-9612(97)00177-4Search in Google Scholar

[11] L.Tuantuan, J.Lee, T.Kobayashi, H.Aoki: J. Mater. Sci. Mater. M.7 (1996) 355.10.1007/BF00154548Search in Google Scholar

[12] B.Mavis, A.C.Tas: J. Am. Ceram. Soc.83 (2000) 989.10.1111/j.1151-2916.2000.tb01314.xSearch in Google Scholar

[13] S.Ban, S.Maruno: J. Biomed. Mater. Res.42 (1998) 387.10.1002/(SICI)1097-4636(19981205)42:3<387::AID-JBM6>3.0.CO;2-FSearch in Google Scholar

[14] S.Rossler, A.Sewing, M.Stolzel, R.Born, D.Scharnweber, M.Dard, H.Worch: J. Biomed. Mater. Res.64 (2002) 655.Search in Google Scholar

[15] S.Lin, R.Z.LeGeros, J.P.LeGeros: J. Biomed. Mater. Res.66 (2003) 819.10.1002/jbm.a.10072Search in Google Scholar

[16] M.Shirkhanzadeh, S.Sims: J. Mater. Sci. Mater.M8 (1997) 595.10.1023/A:1018563201792Search in Google Scholar

[17] M.Kumar, J.Xie, K.Chittur, C.Riley: Biomaterials20 (1999) 1389.10.1016/S0142-9612(99)00043-5Search in Google Scholar

[18] M.H.P.Da Silva, J.H.C.Lima, G.A.Soares, C.N.Elias, M.C.de Andrade, S.M.Best, I.R.Gibson: Surf. Coat. Tech.137 (2001) 270.10.1016/S0257-8972(00)01125-7Search in Google Scholar

[19] X.Hou, X.Liu, J.Xu, J.Shen, X.Liu: Mater. Lett.50 (2001) 103.10.1016/S0167-577X(00)00424-9Search in Google Scholar

[20] J.Redepenning, G.Venkataraman, J.Chen, N.Stafford: J. Biomed. Mater. Res.66 (2003) 411.10.1002/jbm.a.10571Search in Google Scholar

[21] X.Cheng, M.Filiaggi, S.G.Roscoe: Biomaterials25 (2004) 5395.10.1016/j.biomaterials.2003.12.045Search in Google Scholar

[22] S.H.Wang, W.J.Shih, W.L.Li, M.H.Hon, M.C.Wang: J. Eur. Ceram. Soc.25 (2005) 3287.10.1016/j.jeurceramsoc.2004.08.016Search in Google Scholar

[23] B.R.Constantz, B.M.Barr, I.C.Ison, M.T.Fulmer, J.Baker, L.McKinney, S.B.Goodman, S.Gunasekaren, D.C.Delaney, J.Ross, R.D.Poser: J. Biomed. Mater. Res.43 (1998) 451.10.1002/(SICI)1097-4636(199824)43:4<451::AID-JBM13>3.0.CO;2-QSearch in Google Scholar

[24] D.D.Lee, A.Tofighi, M.Aiolova, P.Chakravarthy, A.Catalano, A.Majahad, D.Knaack: Clin. Orthop.367 (1999) 396.10.1097/00003086-199910001-00038Search in Google Scholar

[25] B.Flautre, C.Maynou, J.Lemaitre, P.van Landuyt, P.Hardouin: J. Biomed. Mat. Res. Appl. Biomat.63 (2002) 413.10.1002/jbm.10262Search in Google Scholar

[26] R.Tang, M.Hass, W.Wu, S.Gulde, G.H.Nancollas: J. Coll. Int. Sci.260 (2003) 379.10.1016/S0021-9797(03)00048-1Search in Google Scholar

[27] D.Bayraktar, A.C.Tas: J. Eur. Ceram. Soc.19 (1999) 2573.10.1016/S0955-2219(99)00132-6Search in Google Scholar

[28] A.C.Tas, S.B.Bhaduri: J. Am. Ceram. Soc.87 (2004) 2195.10.1111/j.1151-2916.2004.tb07490.xSearch in Google Scholar

[29] G.H.Nancollas: Adv. Coll. Int. Sci.10 (1979) 215.10.1016/0001-8686(79)87007-4Search in Google Scholar

[30] F.Abbona, F.Christensson, M.Franchini-Angela, H.E.L.Madsen: J. Cryst. Growth131 (1993) 331.10.1016/0022-0248(93)90183-WSearch in Google Scholar

[31] H.M.Kim, H.Takadama, F.Miyaji, T.Kokubo, S.Nishiguchi, T.Nakamura: J. Mater. Sci. Mater.M11 (2000) 555.10.1023/A:1008924102096Search in Google Scholar

[32] A.C.Tas, S.B.Bhaduri: J. Mater. Res.19 (2004) 2742.10.1557/JMR.2004.0349Search in Google Scholar

[33] N.A.Curry, D.W.Jones: J. Chem. Soc.A1971 (1971) 3725.Search in Google Scholar

[34] A.C.Tas: US Patent No. 6,929,692 August 16, 2005.Search in Google Scholar

[35] M.Iijima, in: L.C.Chow, E.D.Eanes (Eds.), Octacalcium Phosphate. Monogr. Oral Sci. Karger, Basel (2001), Vol. 18, p.17.10.1159/000061647Search in Google Scholar PubMed

[36] L.C.Chow, S.Takagi: US Patent No: 5,525,148. June 11, 1996.Search in Google Scholar

[37] C.Combes, M.Freche, C.Rey, B.Biscans: J. Mater. Sci. Mater. M.10 (1999) 231.10.1023/A:1008922029096Search in Google Scholar

[38] R.Rohanizadeh, R.Z.LeGeros, M.Harsono, A.Bendavid: J. Biomed. Mater. Res.A72 (2005) 428.10.1002/jbm.a.30258Search in Google Scholar

[39] S.M.Arifuzzaman, S.Rohani: J. Cryst. Growth267 (2004) 624.10.1016/j.jcrysgro.2004.04.024Search in Google Scholar

[40] R.Tang, C.A.Orme, G.H.Nancollas: J. Phys. Chem.B107 (2003) 10653.Search in Google Scholar

[41] F.Grases, A.Costa-Bauza, M.Ramis, V.Montesinos, A.Conte: Clinica Chim. Acta322 (2002) 29.10.1016/S0009-8981(02)00063-3Search in Google Scholar

Received: 2005-9-30
Accepted: 2006-2-8
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101283/html
Scroll to top button