The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
-
J. Ihle
, H.-P. Martin , M. Herrmann , P. Obenaus , J. Adler , W. Hermel and A. Michaelis
Abstract
The structure and the electrical properties of porous and dense liquid-phase sintered silicon carbide ceramics (LPS-SiC), containing yttria and alumina additives, have been studied.
The electrical resistance of LPS-SiC-materials varies in a wide range. This paper is focused on the influence of porosity on the electrical resistance of the sintered SiC. The porosity was controlled by the SiC grain size. Porous LPS-SiC materials were found to have substantially lower electrical resistance in comparison to dense materials of the same type.
The structure of the materials was investigated by XRD and FESEM. The porous materials consist of large grains due to the coarser starting powders in comparison to the dense materials. This results in a reduction of the dissolved and re-precipitated fraction of the SiC during sintering. Using the in-lens SEM mode, the high conductivity of the formed rims of the SiC grains could be shown. These observations reveal that the rim volume of dense LPS-SiC is much more extended than the rims of porous materials showing the higher conductivity.
References
[1] Ch.Ruzicka: GB Pat. No. 190514400 (1905).Search in Google Scholar
[2] S.Prochazka, R.M.Scanlan: J. Am. Ceram. Soc. 58 (1975) 7210.1111/j.1151-2916.1975.tb18990.xSearch in Google Scholar
[3] M.Omori, H.Takei: US Pat. No. 4502983 (1985).Search in Google Scholar
[4] W.Choi, H.Kim, J.-K.Lee, J. Mater. Sci. Lett. 14 (1995) 1585.10.1007/BF00455423Search in Google Scholar
[5] T.Grande, H.Sommerset, E.Hagen, K.Wiik, M.-A.Einarsrud: J. Am. Ceram. Soc. 80 (1997) 1047.10.1111/j.1151-2916.1997.tb02945.xSearch in Google Scholar
[6] M.Nader, F.Aldinger, M.J.Hoffmann: J. Mater. Sci. 34 (1999) 1197.10.1023/A:1004552704872Search in Google Scholar
[7] S.Baud, F.Thevenot, C.Chatillon: J. Eur. Ceram. Soc. 23 (2003) 29.10.1016/S0955-2219(02)00070-5Search in Google Scholar
[8] G.Rixecker, I.Wiedmann, A.Rosinus, F.Aldinger: J. Eur. Ceram. Soc. 21 (2001) 1013.10.1016/S0955-2219(00)00317-4Search in Google Scholar
[9] G.Rixecker, K.Biswas, I.Wiedmann, F.Aldinger: J. Ceram. Proc. Res. 1 (2000) 12Search in Google Scholar
[10] K.-A.Schwetz, L.Sigl, Th.Kempf, G.Victor: US Pat. No. 6531423 B1 (2003).Search in Google Scholar
[11] F.Siegelin: Dissertation Universität Bayreuth (2002).Search in Google Scholar
[12] E.Volz: Dissertation Universität Erlangen–Nürnberg (2003).Search in Google Scholar
[13] H.-P.Martin, J.Adler, in: Werkstoffwoche-Partnerschaft GbR (Ed.), Materials Week Proc. Symp. K5 – Multifunctional Ceramics (2001).Search in Google Scholar
[14] F.Siegelin, H.-J.Kleebe, L.S.Sigl: J. Mater. Res.18 (2003) 2608.10.1557/JMR.2003.0365Search in Google Scholar
[15] H.-J.Kleebe, F.Siegelin: Z. Metallkd.94 (2003) 211.Search in Google Scholar
[16] E.Volz, A.Roosen, W.Hartung, A.Winnacker: J. Eur. Ceram. Soc.21 (2001) 2089.10.1016/S0955-2219(01)00178-9Search in Google Scholar
[17] T.Chartier, J.M.Laurent, D.S.Smith, F.Valdivieso, P.Goeuriot, F.Thevenot: J. Mater. Sci.36 (2001) 3793.10.1023/A:1017990220468Search in Google Scholar
[18] R.W.Rice: Porosity of Ceramics, Marcel Dekker Inc., New York, Basel, Hong Kong (1998), chapt. 7, 315.Search in Google Scholar
[19] D.S.McLachlan, M.Blaszkiewicz, R.E.Newnham: J. Am. Ceram. Soc.73 (1990) 2187.10.1111/j.1151-2916.1990.tb07576.xSearch in Google Scholar
[20] F.Lux: J. Mater. Sci.28 (1993) 285.10.1007/BF00357799Search in Google Scholar
[21] J.Mizusaki, S.Tsuchiya, K.Waragai, H.Tagawa, Y.Arai, Y.Kuwayama: J. Am. Ceram. Soc.79 (1996) 109.10.1111/j.1151-2916.1996.tb07887.xSearch in Google Scholar
[22] J.Adler, T.Klose, M.Piwonski: Materials Week 1998, Wiley-VCH (1999) 287.Search in Google Scholar
[23] J.Ihle: PhD thesis, Freiberg University of Mining and Technology (2005).Search in Google Scholar
[24] J.Ihle, J.Adler, M.Herrmann, H.-P.Martin: DE Pat. No. 10348819 A1 (2005).Search in Google Scholar
[25] J.Ihle, M.Herrmann, J.Adler: J. Eur. Ceram. Soc.25 (2005) 1005.10.1016/j.jeurceramsoc.2004.04.017Search in Google Scholar
[26] Joint Committee on Powder Diffraction Standards (JCPDS), ASTM, Swartmore (2001).Search in Google Scholar
[27] H.-P.Martin, J.Adler, in: J.Kriegesmann (Ed.), Technische Keramische Werkstoffe, 68. Ergänzungslieferung, März (2002).Search in Google Scholar
[28] W.J.Choyke, D.R.Hamilton, L.Patrick: Phys. Rev. [2]133 (1964) A1163.10.1103/PhysRev.133.A1163Search in Google Scholar
[29] S.Chatterjee, P.Sinha: Phys. Stat. Sol.B70 (1975) 283.Search in Google Scholar
[30] L.S.Sigl, H.-J.Kleebe: J. Am. Ceram. Soc.76 (1993) 773.10.1111/j.1151-2916.1993.tb03677.xSearch in Google Scholar
[31] A.Makrlik: TU Dresden, Fak. für Maschinenbau, study (2000).Search in Google Scholar
[32] A.Can, D.S.McLachlan, G.Sauti, M.Herrmann, in: R.J.Brook, R.N.Katz, S.Somiya (Eds.), 9. ECERS Conf, Portoroz (2005).Search in Google Scholar
© 2006, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News