The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
-
J. Ihle
Abstract
The structure and the electrical properties of porous and dense liquid-phase sintered silicon carbide ceramics (LPS-SiC), containing yttria and alumina additives, have been studied.
The electrical resistance of LPS-SiC-materials varies in a wide range. This paper is focused on the influence of porosity on the electrical resistance of the sintered SiC. The porosity was controlled by the SiC grain size. Porous LPS-SiC materials were found to have substantially lower electrical resistance in comparison to dense materials of the same type.
The structure of the materials was investigated by XRD and FESEM. The porous materials consist of large grains due to the coarser starting powders in comparison to the dense materials. This results in a reduction of the dissolved and re-precipitated fraction of the SiC during sintering. Using the in-lens SEM mode, the high conductivity of the formed rims of the SiC grains could be shown. These observations reveal that the rim volume of dense LPS-SiC is much more extended than the rims of porous materials showing the higher conductivity.
References
[1] Ch.Ruzicka: GB Pat. No. 190514400 (1905).Suche in Google Scholar
[2] S.Prochazka, R.M.Scanlan: J. Am. Ceram. Soc. 58 (1975) 7210.1111/j.1151-2916.1975.tb18990.xSuche in Google Scholar
[3] M.Omori, H.Takei: US Pat. No. 4502983 (1985).Suche in Google Scholar
[4] W.Choi, H.Kim, J.-K.Lee, J. Mater. Sci. Lett. 14 (1995) 1585.10.1007/BF00455423Suche in Google Scholar
[5] T.Grande, H.Sommerset, E.Hagen, K.Wiik, M.-A.Einarsrud: J. Am. Ceram. Soc. 80 (1997) 1047.10.1111/j.1151-2916.1997.tb02945.xSuche in Google Scholar
[6] M.Nader, F.Aldinger, M.J.Hoffmann: J. Mater. Sci. 34 (1999) 1197.10.1023/A:1004552704872Suche in Google Scholar
[7] S.Baud, F.Thevenot, C.Chatillon: J. Eur. Ceram. Soc. 23 (2003) 29.10.1016/S0955-2219(02)00070-5Suche in Google Scholar
[8] G.Rixecker, I.Wiedmann, A.Rosinus, F.Aldinger: J. Eur. Ceram. Soc. 21 (2001) 1013.10.1016/S0955-2219(00)00317-4Suche in Google Scholar
[9] G.Rixecker, K.Biswas, I.Wiedmann, F.Aldinger: J. Ceram. Proc. Res. 1 (2000) 12Suche in Google Scholar
[10] K.-A.Schwetz, L.Sigl, Th.Kempf, G.Victor: US Pat. No. 6531423 B1 (2003).Suche in Google Scholar
[11] F.Siegelin: Dissertation Universität Bayreuth (2002).Suche in Google Scholar
[12] E.Volz: Dissertation Universität Erlangen–Nürnberg (2003).Suche in Google Scholar
[13] H.-P.Martin, J.Adler, in: Werkstoffwoche-Partnerschaft GbR (Ed.), Materials Week Proc. Symp. K5 – Multifunctional Ceramics (2001).Suche in Google Scholar
[14] F.Siegelin, H.-J.Kleebe, L.S.Sigl: J. Mater. Res.18 (2003) 2608.10.1557/JMR.2003.0365Suche in Google Scholar
[15] H.-J.Kleebe, F.Siegelin: Z. Metallkd.94 (2003) 211.Suche in Google Scholar
[16] E.Volz, A.Roosen, W.Hartung, A.Winnacker: J. Eur. Ceram. Soc.21 (2001) 2089.10.1016/S0955-2219(01)00178-9Suche in Google Scholar
[17] T.Chartier, J.M.Laurent, D.S.Smith, F.Valdivieso, P.Goeuriot, F.Thevenot: J. Mater. Sci.36 (2001) 3793.10.1023/A:1017990220468Suche in Google Scholar
[18] R.W.Rice: Porosity of Ceramics, Marcel Dekker Inc., New York, Basel, Hong Kong (1998), chapt. 7, 315.Suche in Google Scholar
[19] D.S.McLachlan, M.Blaszkiewicz, R.E.Newnham: J. Am. Ceram. Soc.73 (1990) 2187.10.1111/j.1151-2916.1990.tb07576.xSuche in Google Scholar
[20] F.Lux: J. Mater. Sci.28 (1993) 285.10.1007/BF00357799Suche in Google Scholar
[21] J.Mizusaki, S.Tsuchiya, K.Waragai, H.Tagawa, Y.Arai, Y.Kuwayama: J. Am. Ceram. Soc.79 (1996) 109.10.1111/j.1151-2916.1996.tb07887.xSuche in Google Scholar
[22] J.Adler, T.Klose, M.Piwonski: Materials Week 1998, Wiley-VCH (1999) 287.Suche in Google Scholar
[23] J.Ihle: PhD thesis, Freiberg University of Mining and Technology (2005).Suche in Google Scholar
[24] J.Ihle, J.Adler, M.Herrmann, H.-P.Martin: DE Pat. No. 10348819 A1 (2005).Suche in Google Scholar
[25] J.Ihle, M.Herrmann, J.Adler: J. Eur. Ceram. Soc.25 (2005) 1005.10.1016/j.jeurceramsoc.2004.04.017Suche in Google Scholar
[26] Joint Committee on Powder Diffraction Standards (JCPDS), ASTM, Swartmore (2001).Suche in Google Scholar
[27] H.-P.Martin, J.Adler, in: J.Kriegesmann (Ed.), Technische Keramische Werkstoffe, 68. Ergänzungslieferung, März (2002).Suche in Google Scholar
[28] W.J.Choyke, D.R.Hamilton, L.Patrick: Phys. Rev. [2]133 (1964) A1163.10.1103/PhysRev.133.A1163Suche in Google Scholar
[29] S.Chatterjee, P.Sinha: Phys. Stat. Sol.B70 (1975) 283.Suche in Google Scholar
[30] L.S.Sigl, H.-J.Kleebe: J. Am. Ceram. Soc.76 (1993) 773.10.1111/j.1151-2916.1993.tb03677.xSuche in Google Scholar
[31] A.Makrlik: TU Dresden, Fak. für Maschinenbau, study (2000).Suche in Google Scholar
[32] A.Can, D.S.McLachlan, G.Sauti, M.Herrmann, in: R.J.Brook, R.N.Katz, S.Somiya (Eds.), 9. ECERS Conf, Portoroz (2005).Suche in Google Scholar
© 2006, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News