Startseite The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide

  • J. Ihle , H.-P. Martin , M. Herrmann , P. Obenaus , J. Adler , W. Hermel und A. Michaelis
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The structure and the electrical properties of porous and dense liquid-phase sintered silicon carbide ceramics (LPS-SiC), containing yttria and alumina additives, have been studied.

The electrical resistance of LPS-SiC-materials varies in a wide range. This paper is focused on the influence of porosity on the electrical resistance of the sintered SiC. The porosity was controlled by the SiC grain size. Porous LPS-SiC materials were found to have substantially lower electrical resistance in comparison to dense materials of the same type.

The structure of the materials was investigated by XRD and FESEM. The porous materials consist of large grains due to the coarser starting powders in comparison to the dense materials. This results in a reduction of the dissolved and re-precipitated fraction of the SiC during sintering. Using the in-lens SEM mode, the high conductivity of the formed rims of the SiC grains could be shown. These observations reveal that the rim volume of dense LPS-SiC is much more extended than the rims of porous materials showing the higher conductivity.


* Correspondence address: Prof. Hans-Peter Martin, Fraunhofer-Institute for Ceramic Technologies and Systems, Winterbergstr. 28, D-01277 Dresden, Germany, Tel.: +493512553744, Fax: +493512554198. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] Ch.Ruzicka: GB Pat. No. 190514400 (1905).Suche in Google Scholar

[2] S.Prochazka, R.M.Scanlan: J. Am. Ceram. Soc. 58 (1975) 7210.1111/j.1151-2916.1975.tb18990.xSuche in Google Scholar

[3] M.Omori, H.Takei: US Pat. No. 4502983 (1985).Suche in Google Scholar

[4] W.Choi, H.Kim, J.-K.Lee, J. Mater. Sci. Lett. 14 (1995) 1585.10.1007/BF00455423Suche in Google Scholar

[5] T.Grande, H.Sommerset, E.Hagen, K.Wiik, M.-A.Einarsrud: J. Am. Ceram. Soc. 80 (1997) 1047.10.1111/j.1151-2916.1997.tb02945.xSuche in Google Scholar

[6] M.Nader, F.Aldinger, M.J.Hoffmann: J. Mater. Sci. 34 (1999) 1197.10.1023/A:1004552704872Suche in Google Scholar

[7] S.Baud, F.Thevenot, C.Chatillon: J. Eur. Ceram. Soc. 23 (2003) 29.10.1016/S0955-2219(02)00070-5Suche in Google Scholar

[8] G.Rixecker, I.Wiedmann, A.Rosinus, F.Aldinger: J. Eur. Ceram. Soc. 21 (2001) 1013.10.1016/S0955-2219(00)00317-4Suche in Google Scholar

[9] G.Rixecker, K.Biswas, I.Wiedmann, F.Aldinger: J. Ceram. Proc. Res. 1 (2000) 12Suche in Google Scholar

[10] K.-A.Schwetz, L.Sigl, Th.Kempf, G.Victor: US Pat. No. 6531423 B1 (2003).Suche in Google Scholar

[11] F.Siegelin: Dissertation Universität Bayreuth (2002).Suche in Google Scholar

[12] E.Volz: Dissertation Universität Erlangen–Nürnberg (2003).Suche in Google Scholar

[13] H.-P.Martin, J.Adler, in: Werkstoffwoche-Partnerschaft GbR (Ed.), Materials Week Proc. Symp. K5 – Multifunctional Ceramics (2001).Suche in Google Scholar

[14] F.Siegelin, H.-J.Kleebe, L.S.Sigl: J. Mater. Res.18 (2003) 2608.10.1557/JMR.2003.0365Suche in Google Scholar

[15] H.-J.Kleebe, F.Siegelin: Z. Metallkd.94 (2003) 211.Suche in Google Scholar

[16] E.Volz, A.Roosen, W.Hartung, A.Winnacker: J. Eur. Ceram. Soc.21 (2001) 2089.10.1016/S0955-2219(01)00178-9Suche in Google Scholar

[17] T.Chartier, J.M.Laurent, D.S.Smith, F.Valdivieso, P.Goeuriot, F.Thevenot: J. Mater. Sci.36 (2001) 3793.10.1023/A:1017990220468Suche in Google Scholar

[18] R.W.Rice: Porosity of Ceramics, Marcel Dekker Inc., New York, Basel, Hong Kong (1998), chapt. 7, 315.Suche in Google Scholar

[19] D.S.McLachlan, M.Blaszkiewicz, R.E.Newnham: J. Am. Ceram. Soc.73 (1990) 2187.10.1111/j.1151-2916.1990.tb07576.xSuche in Google Scholar

[20] F.Lux: J. Mater. Sci.28 (1993) 285.10.1007/BF00357799Suche in Google Scholar

[21] J.Mizusaki, S.Tsuchiya, K.Waragai, H.Tagawa, Y.Arai, Y.Kuwayama: J. Am. Ceram. Soc.79 (1996) 109.10.1111/j.1151-2916.1996.tb07887.xSuche in Google Scholar

[22] J.Adler, T.Klose, M.Piwonski: Materials Week 1998, Wiley-VCH (1999) 287.Suche in Google Scholar

[23] J.Ihle: PhD thesis, Freiberg University of Mining and Technology (2005).Suche in Google Scholar

[24] J.Ihle, J.Adler, M.Herrmann, H.-P.Martin: DE Pat. No. 10348819 A1 (2005).Suche in Google Scholar

[25] J.Ihle, M.Herrmann, J.Adler: J. Eur. Ceram. Soc.25 (2005) 1005.10.1016/j.jeurceramsoc.2004.04.017Suche in Google Scholar

[26] Joint Committee on Powder Diffraction Standards (JCPDS), ASTM, Swartmore (2001).Suche in Google Scholar

[27] H.-P.Martin, J.Adler, in: J.Kriegesmann (Ed.), Technische Keramische Werkstoffe, 68. Ergänzungslieferung, März (2002).Suche in Google Scholar

[28] W.J.Choyke, D.R.Hamilton, L.Patrick: Phys. Rev. [2]133 (1964) A1163.10.1103/PhysRev.133.A1163Suche in Google Scholar

[29] S.Chatterjee, P.Sinha: Phys. Stat. Sol.B70 (1975) 283.Suche in Google Scholar

[30] L.S.Sigl, H.-J.Kleebe: J. Am. Ceram. Soc.76 (1993) 773.10.1111/j.1151-2916.1993.tb03677.xSuche in Google Scholar

[31] A.Makrlik: TU Dresden, Fak. für Maschinenbau, study (2000).Suche in Google Scholar

[32] A.Can, D.S.McLachlan, G.Sauti, M.Herrmann, in: R.J.Brook, R.N.Katz, S.Somiya (Eds.), 9. ECERS Conf, Portoroz (2005).Suche in Google Scholar

Received: 2005-10-8
Accepted: 2006-2-2
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101285/html
Button zum nach oben scrollen