Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
-
Christian Pithan
, Theodor Schneller , Yosuke Shiratori , Subhasish Basu Majumder , Franz-Hubert Haegel , Jürgen Dornseiffer and Rainer Waser
Abstract
The present study gives an overview on the potential, possibilities and perspectives that the synthesis of functional materials, such as BaTiO3, with microemulsions as the reaction medium offers. Well defined nanocrystalline particles in the form of powders for further ceramic processing, as well as stable colloidal dispersions for the preparation of coatings may be obtained. The paper describes the formation, phase behaviour and stabilization of microemulsions and related water/oil/surfactant systems that may be used as a nanoreactor during particle formation. The reaction principles of microemulsion mediated synthesis are outlined and some examples of structural aspects, revealing size effects in these systems are implemented using advanced characterization techniques, such as Raman spectroscopy. Finally, the preparation of mesoscopic layers, covering the thickness gap between thin film and thick film technology, is demonstrated.
References
[1] R.W.Schwartz, T.Schneller, R.Waser: Comptes Rendus Chimie7 (2004) 433.10.1016/j.crci.2004.01.007Search in Google Scholar
[2] S.D.Ramamurthi, D.A.Payne: J. Am. Ceram. Soc.8 (1990) 2547.10.1111/j.1151-2916.1990.tb07633.xSearch in Google Scholar
[3] H.K.Chae, D.A.Payne, Z.Xu, L.Ma: Chem. Mater.6 (1994) 1589.10.1021/cm00046a002Search in Google Scholar
[4] L.Ma, D.A.Payne: Chem. Mater.6 (1994) 875.10.1021/cm00043a001Search in Google Scholar
[5] V.G.Kessler, L.G.Hubert-Pfalzgraf, S.Daniele, A.Gleizes: Chem. Mater.6 (1994) 2342.10.1021/cm00048a020Search in Google Scholar
[6] K.Kato, S.K.Dey: Integr. Ferroelectric.18 (1997) 225.10.1080/10584589708221701Search in Google Scholar
[7] R.W.Vest, J.Xu: IEEE Trans. UFFC35 (1988) 711.10.1109/58.9327Search in Google Scholar
[8] Y.L.Tu, M.L.Calzada, N.J.Phillips, S.J.Milne: J. Am. Ceram. Soc.79 (1996) 441.10.1111/j.1151-2916.1996.tb08142.xSearch in Google Scholar
[9] N.J.Phillips, M.L.Calzada, S.J.Milne: J. Non-Cryst. Sol.147/148 (1992) 285.10.1016/S0022-3093(05)80631-3Search in Google Scholar
[10] S.Merklein, D.Sporn, A.Schönecker: Mat. Res. Soc. Symp. Proc.310 (1992) 263.10.1557/PROC-310-263Search in Google Scholar
[11] Y.T.Lu, S.J.Milne: J. Mater. Res.11 (1996) 2556.10.1557/JMR.1996.0321Search in Google Scholar
[12] D.D.H.Liu, J.P.Mevissen: Integr. Ferroelectr.18 (1997) 263.10.1080/10584589708221704Search in Google Scholar
[13] D.A.Barrow, T.E.Petroff, R.P.Tandon, M.Sayer: J. Appl. Phys.81 (1997) 876.10.1063/1.364172Search in Google Scholar
[14] J.H.Schulman, W.Stoeckenius, L.M.Prince: J. Phys. Chem.63 (1959) 1677.10.1021/j150580a027Search in Google Scholar
[15] T.P.Hoar, J.H.Schulman: Nature52 (1943) 102.10.1038/152102a0Search in Google Scholar
[16] G.W.Flint: US-patent 2,045,455 (1936).Search in Google Scholar
[17] V.R.Kokatnur: US-patent 2,111,100 (1938).Search in Google Scholar
[18] C.Solans, H.Kunieda: Industrial Applications of Microemulsions, Surfactant Science Series 66, Marcel Dekker, New York (1997).Search in Google Scholar
[19] M.Boutonnet, J.Kizling, P.Stenius, G.Maire: Colloids Surfaces5 (1982) 209.10.1016/0166-6622(82)80079-6Search in Google Scholar
[20] M.-L.Wu, L.-B.Lai: Colloids Surfaces A244 (2004) 149.10.1016/j.colsurfa.2004.06.027Search in Google Scholar
[21] T.F.Towey, A.Khan-Lodhi, B.H.Robinson: J. Chem. Soc. Faraday Trans.86 (1990) 3757.10.1039/ft9908603757Search in Google Scholar
[22] Z.Zhang, W.Song, D.Jiang: J. Colloid Interface Sci.271 (2004) 366.10.1016/j.jcis.2003.11.048Search in Google Scholar
[23] V.Pillai, P.Kumar, D.O.Shah: J. Magn. Magn. Mat.116 (1992) L299.10.1016/0304-8853(92)90105-WSearch in Google Scholar
[24] P.Ayyub, A.N.Maitra, D.O.Shah: Physica C168 (1990) 571.10.1016/0921-4534(90)90079-TSearch in Google Scholar
[25] S.Giri, S.Samanta, S.Maji, S.Ganguli, A.Bhaumik: J. Magn. Magn. Mat.285 (2005) 296.10.1016/j.jmmm.2004.08.007Search in Google Scholar
[26] H.Herrig, R.Hempelmann: Mater. Lett.27 (1996) 287.10.1016/0167-577X(96)00011-0Search in Google Scholar
[27] C.Beck, W.Härtl, R.Hempelmann: J. Mater. Res.13 (1998) 3174.10.1557/JMR.1998.0431Search in Google Scholar
[28] H.F.Eicke, J.C.W.Shepherd, A.Steinemann: J. Colloid Interface Sci.56 (1976) 168.10.1016/0021-9797(76)90159-4Search in Google Scholar
[29] M.Grün, K.K.Unker, A.Matsumoto, K.Tsutsumi: Microporous Mesoporous Mat.27 (1999) 207.10.1016/S1387-1811(98)00255-8Search in Google Scholar
[30] C.Lai, S.Q.Tang, Y.J.Wang, K.Wei: Mat. Lett.59 (2005) 210.10.1016/j.matlet.2004.08.037Search in Google Scholar
[31] S.Wada, T.Suzuki, M.Osada, M.Kakihana, T.Noma: Jpn. J. Appl. Phys.37 (1998) 5385.10.1143/JJAP.37.5385Search in Google Scholar
[32] D.L.Rousseau, R.P.Bauman, S.P.S.Porto: J. Raman Spectrosc.10 (1981) 253.10.1002/jrs.1250100152Search in Google Scholar
[33] U.D.Venkateswaran, V.M.Naik, R.Naik: Phys. Rev. B58 (1998) 14256.10.1103/PhysRevB.58.14256Search in Google Scholar
[34] B.D.Begg, K.S.Finnie, E.R.Vance: J. Am. Ceram. Soc.79 (1996) 2666.10.1111/j.1151-2916.1996.tb09032.xSearch in Google Scholar
[35] P.S.Dobal, R.S.Katiyar: J. Raman Spectrosc.33 (2002) 405.10.1002/jrs.876Search in Google Scholar
[36] M.H.Frey, D.A.Payne: Phys. Rev. B54 (1996) 3158.10.1103/PhysRevB.54.3158Search in Google Scholar
[37] T.Takeuchi, M.Tabuchi, K.Ado, K.Honjo, O.Nakamura, H.Kageyama, Y.Suyama, N.Ohtori, M.Nagasawa: J. Mater. Sci.32 (1997) 4053.10.1023/A:1018697706704Search in Google Scholar
[38] G.Busca, V.Buscaglia, M.Leoni, P.Nanni: Chem. Mater.6 (1994) 955.10.1021/cm00043a016Search in Google Scholar
[39] T.Noma, S.Wada, M.Yano, T.Suzuki: J. Appl. Phys.80 (1996) 5223.10.1063/1.363508Search in Google Scholar
[40] S.W.Lu, B.I.Lee, Z.L.Wang, W.D.Samuels: J. Cryst. Growth219 (2000) 269.10.1016/S0022-0248(00)00619-9Search in Google Scholar
[41] Y.-I.Kim, J.K.Jung, K.-S.Ryu: Mater. Res. Bull.39 (2004) 1045.10.1016/j.materresbull.2004.03.001Search in Google Scholar
[42] M.Boulos, S.Guillemet-Fritsch, F.Mathieu, B.Durand, T.Lebey, V.Bley: Solid State Ionics176 (2005) 1301.10.1016/j.ssi.2005.02.024Search in Google Scholar
[43] W.-S.Cho: J. Phys. Chem. Solids59 (1998) 659.10.1016/S0022-3697(97)00227-8Search in Google Scholar
[44] J.Wang, J.Fang, S.-C.Ng, L.-M.Gan, C.-H.Chew, X.Wang, Z.Shen: J. Am. Ceram. Soc.82 (1999) 873.10.1111/j.1151-2916.1999.tb01848.xSearch in Google Scholar
[45] Y.-J.Jung, D.-Y.Lim, J.-S.Nho, S.-B.Cho, R.E.Riman, B. W.Lee: J. Cryst. Growth274 (2005) 638.10.1016/j.jcrysgro.2004.10.023Search in Google Scholar
[46] A.Dixit, S.B.Majumder, A.Savvinov, R.S.Katiyar, R.Guo, A. S.Bhalla: Mater. Lett.56 (2002) 933.10.1016/S0167-577X(02)00640-7Search in Google Scholar
[47] S.Hoffmann, R.Waser: J. Europ. Ceram. Soc.19 (1999) 1339.10.1016/S0955-2219(98)00430-0Search in Google Scholar
© 2006, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News