Home Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
Article
Licensed
Unlicensed Requires Authentication

Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives

  • Christian Pithan , Theodor Schneller , Yosuke Shiratori , Subhasish Basu Majumder , Franz-Hubert Haegel , Jürgen Dornseiffer and Rainer Waser
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

The present study gives an overview on the potential, possibilities and perspectives that the synthesis of functional materials, such as BaTiO3, with microemulsions as the reaction medium offers. Well defined nanocrystalline particles in the form of powders for further ceramic processing, as well as stable colloidal dispersions for the preparation of coatings may be obtained. The paper describes the formation, phase behaviour and stabilization of microemulsions and related water/oil/surfactant systems that may be used as a nanoreactor during particle formation. The reaction principles of microemulsion mediated synthesis are outlined and some examples of structural aspects, revealing size effects in these systems are implemented using advanced characterization techniques, such as Raman spectroscopy. Finally, the preparation of mesoscopic layers, covering the thickness gap between thin film and thick film technology, is demonstrated.


* Correspondence address: Dr. Christian Pithan, Institute for Electronic Materials, Institute of Solid State Research, Research Centre Jülich GmbH, D-52428 Jülich (Germany), Tel.: +492461615016, Fax: +492461612550. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] R.W.Schwartz, T.Schneller, R.Waser: Comptes Rendus Chimie7 (2004) 433.10.1016/j.crci.2004.01.007Search in Google Scholar

[2] S.D.Ramamurthi, D.A.Payne: J. Am. Ceram. Soc.8 (1990) 2547.10.1111/j.1151-2916.1990.tb07633.xSearch in Google Scholar

[3] H.K.Chae, D.A.Payne, Z.Xu, L.Ma: Chem. Mater.6 (1994) 1589.10.1021/cm00046a002Search in Google Scholar

[4] L.Ma, D.A.Payne: Chem. Mater.6 (1994) 875.10.1021/cm00043a001Search in Google Scholar

[5] V.G.Kessler, L.G.Hubert-Pfalzgraf, S.Daniele, A.Gleizes: Chem. Mater.6 (1994) 2342.10.1021/cm00048a020Search in Google Scholar

[6] K.Kato, S.K.Dey: Integr. Ferroelectric.18 (1997) 225.10.1080/10584589708221701Search in Google Scholar

[7] R.W.Vest, J.Xu: IEEE Trans. UFFC35 (1988) 711.10.1109/58.9327Search in Google Scholar

[8] Y.L.Tu, M.L.Calzada, N.J.Phillips, S.J.Milne: J. Am. Ceram. Soc.79 (1996) 441.10.1111/j.1151-2916.1996.tb08142.xSearch in Google Scholar

[9] N.J.Phillips, M.L.Calzada, S.J.Milne: J. Non-Cryst. Sol.147/148 (1992) 285.10.1016/S0022-3093(05)80631-3Search in Google Scholar

[10] S.Merklein, D.Sporn, A.Schönecker: Mat. Res. Soc. Symp. Proc.310 (1992) 263.10.1557/PROC-310-263Search in Google Scholar

[11] Y.T.Lu, S.J.Milne: J. Mater. Res.11 (1996) 2556.10.1557/JMR.1996.0321Search in Google Scholar

[12] D.D.H.Liu, J.P.Mevissen: Integr. Ferroelectr.18 (1997) 263.10.1080/10584589708221704Search in Google Scholar

[13] D.A.Barrow, T.E.Petroff, R.P.Tandon, M.Sayer: J. Appl. Phys.81 (1997) 876.10.1063/1.364172Search in Google Scholar

[14] J.H.Schulman, W.Stoeckenius, L.M.Prince: J. Phys. Chem.63 (1959) 1677.10.1021/j150580a027Search in Google Scholar

[15] T.P.Hoar, J.H.Schulman: Nature52 (1943) 102.10.1038/152102a0Search in Google Scholar

[16] G.W.Flint: US-patent 2,045,455 (1936).Search in Google Scholar

[17] V.R.Kokatnur: US-patent 2,111,100 (1938).Search in Google Scholar

[18] C.Solans, H.Kunieda: Industrial Applications of Microemulsions, Surfactant Science Series 66, Marcel Dekker, New York (1997).Search in Google Scholar

[19] M.Boutonnet, J.Kizling, P.Stenius, G.Maire: Colloids Surfaces5 (1982) 209.10.1016/0166-6622(82)80079-6Search in Google Scholar

[20] M.-L.Wu, L.-B.Lai: Colloids Surfaces A244 (2004) 149.10.1016/j.colsurfa.2004.06.027Search in Google Scholar

[21] T.F.Towey, A.Khan-Lodhi, B.H.Robinson: J. Chem. Soc. Faraday Trans.86 (1990) 3757.10.1039/ft9908603757Search in Google Scholar

[22] Z.Zhang, W.Song, D.Jiang: J. Colloid Interface Sci.271 (2004) 366.10.1016/j.jcis.2003.11.048Search in Google Scholar

[23] V.Pillai, P.Kumar, D.O.Shah: J. Magn. Magn. Mat.116 (1992) L299.10.1016/0304-8853(92)90105-WSearch in Google Scholar

[24] P.Ayyub, A.N.Maitra, D.O.Shah: Physica C168 (1990) 571.10.1016/0921-4534(90)90079-TSearch in Google Scholar

[25] S.Giri, S.Samanta, S.Maji, S.Ganguli, A.Bhaumik: J. Magn. Magn. Mat.285 (2005) 296.10.1016/j.jmmm.2004.08.007Search in Google Scholar

[26] H.Herrig, R.Hempelmann: Mater. Lett.27 (1996) 287.10.1016/0167-577X(96)00011-0Search in Google Scholar

[27] C.Beck, W.Härtl, R.Hempelmann: J. Mater. Res.13 (1998) 3174.10.1557/JMR.1998.0431Search in Google Scholar

[28] H.F.Eicke, J.C.W.Shepherd, A.Steinemann: J. Colloid Interface Sci.56 (1976) 168.10.1016/0021-9797(76)90159-4Search in Google Scholar

[29] M.Grün, K.K.Unker, A.Matsumoto, K.Tsutsumi: Microporous Mesoporous Mat.27 (1999) 207.10.1016/S1387-1811(98)00255-8Search in Google Scholar

[30] C.Lai, S.Q.Tang, Y.J.Wang, K.Wei: Mat. Lett.59 (2005) 210.10.1016/j.matlet.2004.08.037Search in Google Scholar

[31] S.Wada, T.Suzuki, M.Osada, M.Kakihana, T.Noma: Jpn. J. Appl. Phys.37 (1998) 5385.10.1143/JJAP.37.5385Search in Google Scholar

[32] D.L.Rousseau, R.P.Bauman, S.P.S.Porto: J. Raman Spectrosc.10 (1981) 253.10.1002/jrs.1250100152Search in Google Scholar

[33] U.D.Venkateswaran, V.M.Naik, R.Naik: Phys. Rev. B58 (1998) 14256.10.1103/PhysRevB.58.14256Search in Google Scholar

[34] B.D.Begg, K.S.Finnie, E.R.Vance: J. Am. Ceram. Soc.79 (1996) 2666.10.1111/j.1151-2916.1996.tb09032.xSearch in Google Scholar

[35] P.S.Dobal, R.S.Katiyar: J. Raman Spectrosc.33 (2002) 405.10.1002/jrs.876Search in Google Scholar

[36] M.H.Frey, D.A.Payne: Phys. Rev. B54 (1996) 3158.10.1103/PhysRevB.54.3158Search in Google Scholar

[37] T.Takeuchi, M.Tabuchi, K.Ado, K.Honjo, O.Nakamura, H.Kageyama, Y.Suyama, N.Ohtori, M.Nagasawa: J. Mater. Sci.32 (1997) 4053.10.1023/A:1018697706704Search in Google Scholar

[38] G.Busca, V.Buscaglia, M.Leoni, P.Nanni: Chem. Mater.6 (1994) 955.10.1021/cm00043a016Search in Google Scholar

[39] T.Noma, S.Wada, M.Yano, T.Suzuki: J. Appl. Phys.80 (1996) 5223.10.1063/1.363508Search in Google Scholar

[40] S.W.Lu, B.I.Lee, Z.L.Wang, W.D.Samuels: J. Cryst. Growth219 (2000) 269.10.1016/S0022-0248(00)00619-9Search in Google Scholar

[41] Y.-I.Kim, J.K.Jung, K.-S.Ryu: Mater. Res. Bull.39 (2004) 1045.10.1016/j.materresbull.2004.03.001Search in Google Scholar

[42] M.Boulos, S.Guillemet-Fritsch, F.Mathieu, B.Durand, T.Lebey, V.Bley: Solid State Ionics176 (2005) 1301.10.1016/j.ssi.2005.02.024Search in Google Scholar

[43] W.-S.Cho: J. Phys. Chem. Solids59 (1998) 659.10.1016/S0022-3697(97)00227-8Search in Google Scholar

[44] J.Wang, J.Fang, S.-C.Ng, L.-M.Gan, C.-H.Chew, X.Wang, Z.Shen: J. Am. Ceram. Soc.82 (1999) 873.10.1111/j.1151-2916.1999.tb01848.xSearch in Google Scholar

[45] Y.-J.Jung, D.-Y.Lim, J.-S.Nho, S.-B.Cho, R.E.Riman, B. W.Lee: J. Cryst. Growth274 (2005) 638.10.1016/j.jcrysgro.2004.10.023Search in Google Scholar

[46] A.Dixit, S.B.Majumder, A.Savvinov, R.S.Katiyar, R.Guo, A. S.Bhalla: Mater. Lett.56 (2002) 933.10.1016/S0167-577X(02)00640-7Search in Google Scholar

[47] S.Hoffmann, R.Waser: J. Europ. Ceram. Soc.19 (1999) 1339.10.1016/S0955-2219(98)00430-0Search in Google Scholar

Received: 2005-11-29
Accepted: 2006-1-15
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101264/html
Scroll to top button