Home The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
Article
Licensed
Unlicensed Requires Authentication

The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM

  • Rong Huang , Hui Gu , Zhongming Chen , Shouhong Tan and Dongliang Jiang
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

The microstructures of three hot-pressed SiC ceramic materials with 5vol.%, 10vol.%, and 15vol.% AlN were investigated by analytical electron microscopy, especially electron energy-loss spectroscopic mapping (EELS mapping). AlN additives dissolve into SiC to form a core/rim structure and to refine the SiC grains. The crystallographic configurations for cores revealed by EELS mapping elucidate the sintering mechanism as liquid-phase sintering in the SiC–AlN composites. The additional 0.5wt.% Y2O3 additives that distribute in the intergranular regions facilitate the formation of liquids to improve the sintering property. With the increase of AlN, the microstructure evolution experienced three stages characterized as solid solution with core/rim structure for a few elongated grains, core/rim for the general equiaxed grains, and the emergence of individual AlN grains with SiC-rich precipitations, respectively. The refined grains and a variety of microstructures contribute to an excellent combination of mechanical properties, with the flexural strength as high as 1000MPa while the fracture toughness remains moderately high.


* Correspondence address: Prof. Dr. Hui Gu, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi road, Shanghai 200050, China, Tel.: +862152412318, Fax: +862152413122. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] I.B.Cutler, P.D.Miller, W.Rafaniello, H.K.Park, D.P.Thompson, K.H.Jack: Nature275 (1978) 534.10.1038/275434a0Search in Google Scholar

[2] W.Rafaniello, K.Cho, A.V.Virkar: J. Mater. Sci.16 (1981) 3479.10.1007/BF00586311Search in Google Scholar

[3] R.Ruh, A.Zangvil: J. Am. Ceram. Soc.65 (1981) 260.10.1111/j.1151-2916.1982.tb10429.xSearch in Google Scholar

[4] W.Rafaniello, M.R.Plichta, A.V.Virkar: J. Am. Ceram. Soc.66 (1983) 272.10.1111/j.1151-2916.1983.tb15713.xSearch in Google Scholar

[5] A.Zangvil, R.Ruh: Mater. Sci. Eng.71 (1985) 159.10.1016/0025-5416(85)90218-6Search in Google Scholar

[6] R.Ruh, A.Zangvil, J.Barlowe: Am. Ceram. Soc. Bull.64 (1985) 1368.Search in Google Scholar

[7] S.Y.Kuo, A.V.Virkar, W.Rafaniello: J. Am. Ceram. Soc.70 (1987) C125.10.1111/j.1151-2916.1987.tb05667.xSearch in Google Scholar

[8] Y.Sugahara, K.I.Sugimoto, H.Takagi, K.Kuroda, C.Kato: J. Mater. Sci. Lett.7 (1988) 795.10.1007/BF00722105Search in Google Scholar

[9] A.Zangvil, R.Ruh: J. Am. Ceram. Soc.71 (1988) 884.10.1111/j.1151-2916.1988.tb07541.xSearch in Google Scholar

[10] C.J.Wei, R.R.Lee: J. Mater. Sci.26 (1991) 2930.10.1007/BF01124823Search in Google Scholar

[11] J.Chen, Q.Tian, A.V.Virkar: J. Am. Ceram. Soc.75 (1992) 809.10.1111/j.1151-2916.1992.tb04146.xSearch in Google Scholar

[12] Y.R.Xu, A.Zangvil, M.Landon, F.Thevenot: J. Am. Ceram. Soc.75 (1992) 325.10.1111/j.1151-2916.1992.tb08182.xSearch in Google Scholar

[13] M.Miura, T.Yogo, S.I.Hirano: J. Mater. Sci.28 (1993) 3859.10.1007/BF00353191Search in Google Scholar

[14] J.K.Lee, H.Tanaka, H.Kim: Mater. Lett.29 (1996) 1.10.1016/S0167-577X(96)00110-3Search in Google Scholar

[15] M.S.Sandlin, K.J.Bowman, J.Root: Acta. Mater.45 (1997) 383.10.1016/S1359-6454(96)00148-6Search in Google Scholar

[16] J.F.Li, A.Kawasaki, R.Watanabe: J. Am. Ceram. Soc.81 (1998) 1445.10.1111/j.1151-2916.1998.tb02502.xSearch in Google Scholar

[17] Y.B.Pan, J.H.Qiu, M.Morita, S.H.Tan, D.L.Jiang: J. Mater. Sci.33 (1998) 1233.10.1023/A:1004381827254Search in Google Scholar

[18] Y.B.Pan, J.H.Qiu, M.Kawagoe, M.Morita, S.H.Tan, D.L.Jiang: J. Eur. Ceram. Soc.19 (1999) 1789.10.1016/S0955-2219(98)00280-5Search in Google Scholar

[19] A.H.Lubis, N.L.Hecht, G.A.GravesJr, R.Ruh: J. Am. Ceram. Soc.82 (1999) 2481.10.1111/j.1151-2916.1999.tb02107.xSearch in Google Scholar

[20] A.H.Lubis, N.L.Hecht, T.R.Watkins, K.L.More, R.Ruh: J. Am. Ceram. Soc.85 (2002) 933.10.1111/j.1151-2916.2002.tb00195.xSearch in Google Scholar

[21] S.Mandal, K.K.Dhargupta, S.Ghatak: Ceram. Int.28 (2002) 145.10.1016/S0272-8842(01)00070-0Search in Google Scholar

[22] K.Itatani, R.Tsukamoto, A.C.A.Delsing, H.T.Hintzen, I.Okada: J. Am. Ceram. Soc.85 (2002) 1894.10.1111/j.1151-2916.2002.tb00375.xSearch in Google Scholar

[23] K.Suzuki, M.Sasaki: Ceram. Int.31 (2005) 749.10.1016/j.ceramint.2004.08.014Search in Google Scholar

[24] Z.M.Chen, S.H.Tan, D.L.Jiang: J. Inorg. Mater. (in Chinese)12 (1997) 763.Search in Google Scholar

[25] L.S.Sigl, H.J.Kleebe: J. Am. Ceram. Soc.76 (1993) 773.10.1111/j.1151-2916.1993.tb03677.xSearch in Google Scholar

[26] R.E.Loehman, in: M.J.Hoffman, G.Petzow (Eds.), NATO ASI Series E: Applied Science, Vol. 276, Kluwer Academic Publishers, Dordrecht, Netherlands (1994) 167.Search in Google Scholar

[27] R.Huang, H.Gu, J.X.Zhand, D.L.Jiang: Acta. Mater.53 (2005) 2521.10.1016/j.actamat.2004.10.055Search in Google Scholar

[28] R.Huang, H.Gu, G.Rixecker, F.Aldinger, C.Scheu, M.Rühle: Z. Metallkd.96 (2005) 496.Search in Google Scholar

[29] N.P.Padture, B.R.Lawn: J. Am. Ceram. Soc.77 (1994) 2518.10.1111/j.1151-2916.1994.tb04637.xSearch in Google Scholar

[30] J.J.Cao, W.J.MoberlyChan, L.C.DeJonghe, C.J.Gilbert, R.O.Ritchie: J. Am. Ceram. Soc.79 (1996) 461.10.1111/j.1151-2916.1996.tb08145.xSearch in Google Scholar

[31] S.G.Lee, Y.W.Kim, M.Mitomo: J. Am. Ceram. Soc.84 (2001) 1347.10.1111/j.1151-2916.2001.tb00840.xSearch in Google Scholar

[32] W.J.MoberlyChan, L.C.DeJonghe: Acta. Mater.46 (1998) 2471.10.1016/S1359-6454(98)80030-XSearch in Google Scholar

[33] W.J.MoberlyChan, J.J.Cao, L.C.DeJonghe: Acta. Mater.46 (1998) 1625.10.1016/S1359-6454(97)00343-1Search in Google Scholar

[34] J.Y.Kim, Y.W.Kim, M.Mitomo, G.D.Zhan, J.G.Lee: J. Am. Ceram. Soc.82 (1999) 441.10.1111/j.1551-2916.1999.tb20082.xSearch in Google Scholar

Received: 2005-11-12
Accepted: 2006-1-26
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101279/html
Scroll to top button