Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
-
Victor T. Witusiewicz
Abstract
The enthalpies of formation of β and γ alloys of the Ag–Cu–Zn system were determined by dissolution calorimetry. The melting and solid-state transformation temperatures as well as the enthalpies of the order/disorder and β/χ transformations were measured by differential scanning calorimetry. Thermodynamic descriptions are presented for the binary Ag–Zn system and for the ternary Ag–Cu–Zn system in the entire composition ranges. The thermodynamic model parameters of the constituent binaries Ag–Cu and Cu–Zn are taken from earlier assessments. Those for Ag–Zn and the Ag–Cu–Zn system are established based on relevant experimental data available in the literature completed with experimental data obtained in the present work. Several vertical and isothermal sections as well as the liquidus surface and thermodynamic properties are calculated using the evaluated parameters and show reasonably good agreement with experimental data available.
References
[1] T.-M.Korhonen: Ag–Cu–Zn system, private communication.Suche in Google Scholar
[2] K.J.Rönkä, F.J.J.van Loo, J.K.Kivilahti: Z. Metallkd.88 (1997) 9.Suche in Google Scholar
[3] H.Liang, Y.A.Chang: J. Phase Equil.19 (1998) 25.10.1361/105497198770342724Suche in Google Scholar
[4] V.T.Witusiewicz, U.Hecht, S.G.Fries, S.Rex: J. Alloys Comp.385 (2004) 133.Suche in Google Scholar
[5] T.Gómez-Acebo: CALPHAD22 (1998) 203.10.1016/S0364-5916(98)00024-8Suche in Google Scholar
[6] M.Kowalski, P.J.Spencer: J. Phase Diagrams14 (1993) 432.10.1007/BF02671961Suche in Google Scholar
[7] B.J.Lee: Ag-Zn system. Landolt-Börnstein, New series, Group IV, Physical chemistry, Vol. 19, Subvolume B. Part 1. Berlin: Springer-Verlag (2001).Suche in Google Scholar
[8] J.Miettinen: CALPHAD26 (2002) 119.10.1016/S0364-5916(02)00028-7Suche in Google Scholar
[9] J.Miettinen: CALPHAD27 (2003) 263.10.1016/j.calphad.2003.09.002Suche in Google Scholar
[10] M.Jiang, C.P.Wang, X.J.Liu, I.Ohnuma, R.Kainuma, G.P.Vassilev, K.Ishida: J. Phys. Chem. Solids66 (2005) 246.10.1016/j.jpcs.2004.08.039Suche in Google Scholar
[11] J.Miettinen: CALPHAD28 (2004) 313.10.1016/j.calphad.2004.09.003Suche in Google Scholar
[12] V.T.Witusiewicz, U.Hecht, S.G.Fries, S.Rex: J. Alloys Comp.387 (2005) 217.10.1016/j.jallcom.2004.06.078Suche in Google Scholar
[13] V.T.Witusiewicz, U.Hecht, S.Rex, F.Sommer: J. Alloys Comp.337 (2002) 189.10.1016/S0925-8388(01)01954-5Suche in Google Scholar
[14] E.Gebhard, G.Petzow, W.Krauß: Z. Metallkd.53 (1962) 372.Suche in Google Scholar
[15] V.T.Witusiewicz, F.Sommer, E.J.Mittemeijer: Metal. Trans.B34 (2003) 209.Suche in Google Scholar
[16] A.T.Dinsdale: CALPHAD15 (1991) 317.10.1016/0364-5916(91)90030-NSuche in Google Scholar
[17] S.Ueno: Mem. Coll. Sci. Kyoto Imp. Univ.12 (1929) 347.10.2307/331355Suche in Google Scholar
[18] M.Keinert: Z. Phys. Chem.160A (1932) 15.10.1515/zpch-1932-16004Suche in Google Scholar
[19] K.M.Weigert: Trans AIME200 (1954) 233.10.1007/BF03398004Suche in Google Scholar
[20] K.M.Weigert: Trans AIME200 (1954) 1325.Suche in Google Scholar
[21] N.Nakanishi, H.Takehora, Y.Murakami, Y.Senda, H.Sugiyama, S.Kashi: Jpn. J. Appl. Phys.67 (1967) 1341.10.1143/JJAP.6.1341Suche in Google Scholar
[22] M.Yono, H.Asano, N.Nakanishi, S.Kashi: Trans. JIM8 (1967) 277.Suche in Google Scholar
[23] Y.Murakami, N.Nakanishi, S.Kashi: Acta Met.19 (1971) 93.10.1016/0001-6160(71)90121-0Suche in Google Scholar
[24] Y.Matsuo: Trans. JIM21 (1980) 174.10.2320/matertrans1960.21.174Suche in Google Scholar
[25] Y.Murakami, N.Nakanishi: J. Jpn. Inst. Met.47 (1983) 470.Suche in Google Scholar
[26] Y.Murakami, S.Kashi, N.Nakanishi: Acta Met.32 (1984) 629.10.1016/0001-6160(84)90136-6Suche in Google Scholar
[27] Y.Matsuo, Y.Torii: J. Jpn. Inst. Met.51 (1987) 31.Suche in Google Scholar
[28] M.Hillert, L.-I.Staffansson: Acta Chem. Scand.24 (1970) 3618.10.3891/acta.chem.scand.24-3618Suche in Google Scholar
[29] T.Massalaski (Ed.): Binary Phase Diagrams. ASM International, Metals Park, Ohio (1990).Suche in Google Scholar
[30] W.B.Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, Oxford (1967).Suche in Google Scholar
[31] P.Villars, L.D.Calvert: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd Edition, ASM International, Materials Park, Ohio (1991).Suche in Google Scholar
[32] K.Moeller: Z. Metallkd.35 (1943) 27.10.1515/ijmr-1943-350106Suche in Google Scholar
[33] J.Miettinen: CALPHAD27 (2003) 147.10.1016/j.calphad.2003.08.003Suche in Google Scholar
[34] J.Miettinen: CALPHAD29 (2005) 40–48.10.1016/j.calphad.2005.02.002Suche in Google Scholar
[35] J.Miettinen: CALPHAD29 (2005) 212.10.1016/j.calphad.2005.08.001Suche in Google Scholar
[36] O.Redlich, A.T.Kister: Ind. Eng. Chem.40 (1948) 345.10.1021/ie50458a036Suche in Google Scholar
[37] M.Muggianu, M.Gambino, J.P.Bros: J. Chim. Phys.72 (1975) 83.Suche in Google Scholar
[38] B.Sundman, J.Ågren: J. Phys. Chem. Solids, 42 (1981) 297.10.1016/0022-3697(81)90144-XSuche in Google Scholar
[39] N.Dupin, I.Ansara: Z. Metallkd.90 (1999) 76.Suche in Google Scholar
[40] A.Kusoffsky: Acta Mater.50 (2002) 5139.10.1016/S1359-6454(02)00382-8Suche in Google Scholar
[41] B.Sundman, B.Jansson, J.-O.Andersson: CALPHAD9 (1985) 153.10.1016/0364-5916(85)90021-5Suche in Google Scholar
[42] I.Ansara, A.T.Dinsdale, M.H.Rand (Ed.): COST 507-Thermochemical database for light metal alloys, Volume 2, European Communities, Belgium (1998).Suche in Google Scholar
[43] A.Kusoffsky, N.Dupin, B.Sundman: CALPHAD25 (2001) 549.10.1016/S0364-5916(02)00007-XSuche in Google Scholar
[44] K.W.Andrews, H.E.Davies, W.Hume-Rothery, C.R.Oswin: Proc. Roy. Soc. (London)177A (1941) 149.Suche in Google Scholar
[45] A.Wiedebach-Nostiz: Z. Metallkd.37 (1946) 56.10.1515/ijmr-1946-371-212Suche in Google Scholar
[46] F.E.Wittig, F.Huber: Z. Elektrochemie63 (1959) 994.Suche in Google Scholar
[47] D.B.Downie. J.F.Martin: J. Chem. Thermodyn.17 (1985) 927.10.1016/0021-9614(85)90005-9Suche in Google Scholar
[48] C.E.Birchenall, C.H.Cheng: Metals Trans.185 (1949) 428.Suche in Google Scholar
[49] E.E.Underwood, B.L.Averbach: J. Metals3 (1951) 1198.Suche in Google Scholar
[50] J.L.Straalsund, B.Masson: Trans. AIME242 (1968) 190.Suche in Google Scholar
[51] D.B.Mason, J.L.Sheu: Met. Trans.1 (1970) 3005.10.1007/BF02643424Suche in Google Scholar
[52] A.Yazawa, A.Gubcova: Trans. JIM11 (1970) 419.Suche in Google Scholar
[53] U.Gerling, M.J.Pool, B.Predel: Z. Metallkd.70 (1979) 224.Suche in Google Scholar
[54] K.Kameda: Trans. JIM28 (1987) 41.10.2320/matertrans1960.28.41Suche in Google Scholar
[55] G.R.Blair, D.B.Downie: Metal Sci. J.4 (1970) 1.10.1016/0036-9748(70)90130-4Suche in Google Scholar
[56] F.Körber, W.Oelsen: Mitt. K.W.I. Eisenforsch.19 (1937) 209.Suche in Google Scholar
[57] Z.Weibke: Z. Anorg. Chem.323 (1937) 289.10.1002/zaac.19372320311Suche in Google Scholar
[58] R.Hultgren, P.D.Desai, D.T.Hawkins, M.Gleiser, K.K.Kelley: Selected Values of Thermodynamic Properties of Binary Alloys. ASM, Metals Park, Ohio (1973).Suche in Google Scholar
© 2006, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News